-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathrun_simulation.py
935 lines (785 loc) · 42.2 KB
/
run_simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
from typing import List
import copy
import functools
import yaml
import datetime
import torch
import argparse
import warnings
import os
from tqdm import tqdm
from nuplan_simulation.planner import Planner
from nuplan_simulation.common_utils import *
warnings.filterwarnings("ignore")
from nuplan.planning.simulation.planner.idm_planner import IDMPlanner
from nuplan.planning.simulation.planner.simple_planner import SimplePlanner
from nuplan.planning.utils.multithreading.worker_parallel import SingleMachineParallelExecutor
from nuplan.planning.scenario_builder.scenario_filter import ScenarioFilter
from nuplan.planning.scenario_builder.nuplan_db.nuplan_scenario_builder import NuPlanScenarioBuilder
from nuplan.planning.scenario_builder.nuplan_db.nuplan_scenario_utils import ScenarioMapping
from nuplan.planning.simulation.callback.simulation_log_callback import SimulationLogCallback
from nuplan.planning.simulation.callback.metric_callback import MetricCallback
from nuplan.planning.simulation.callback.multi_callback import MultiCallback
from nuplan.planning.simulation.main_callback.metric_aggregator_callback import MetricAggregatorCallback
from nuplan.planning.simulation.main_callback.metric_file_callback import MetricFileCallback
from nuplan.planning.simulation.main_callback.multi_main_callback import MultiMainCallback
from nuplan.planning.simulation.observation.tracks_observation import TracksObservation
from nuplan.planning.simulation.main_callback.metric_summary_callback import MetricSummaryCallback
from nuplan.planning.simulation.observation.idm_agents import IDMAgents
from nuplan.planning.simulation.controller.perfect_tracking import PerfectTrackingController
from nuplan.planning.simulation.controller.log_playback import LogPlaybackController
from nuplan.planning.simulation.controller.two_stage_controller import TwoStageController
from nuplan.planning.simulation.controller.tracker.lqr import LQRTracker
from nuplan.planning.simulation.controller.motion_model.kinematic_bicycle import KinematicBicycleModel
from nuplan.planning.simulation.simulation_time_controller.step_simulation_time_controller import StepSimulationTimeController
from nuplan.planning.simulation.runner.simulations_runner import SimulationRunner
from nuplan.planning.simulation.runner.runner_report import RunnerReport
from nuplan.planning.simulation.simulation import Simulation
from nuplan.planning.simulation.simulation_setup import SimulationSetup
from nuplan.planning.nuboard.nuboard import NuBoard
from nuplan.planning.nuboard.base.data_class import NuBoardFile
import logging
import numpy as np
logger = logging.getLogger(__name__)
from nuplan.planning.scenario_builder.abstract_scenario import AbstractScenario
from nuplan.planning.simulation.planner.abstract_planner import AbstractPlanner
from nuplan.planning.simulation.history.simulation_history import SimulationHistory, SimulationHistorySample
# multiple proces
import torch.multiprocessing as mp
def process_single_sample(i, planners, planner_inputs):
return planners[i].inputs_to_model_sample(
history=planner_inputs[i].history,
traffic_light_data=list(planner_inputs[i].traffic_light_data),
)
def run_metric_engine(
metric_engine: MetricsEngine, scenario: AbstractScenario, planner_name: str, history: SimulationHistory
) -> None:
"""
Run the metric engine.
"""
logger.debug("Starting metrics computation...")
# metric_files = metric_engine.compute(history, scenario=scenario, planner_name=planner_name)
metric_results = metric_engine.compute_metric_results(history, scenario)
# print('testing: ', metric_results)
return metric_results
def update_metric_results(metric_dic, batch_metric_results):
if metric_dic is None:
metric_dic = {}
for each_key in batch_metric_results[0]:
if batch_metric_results[0][each_key][0].metric_score is not None:
metric_dic[each_key] = []
for each in batch_metric_results:
for key in each.keys():
if key in metric_dic.keys():
metric_dic[key] += [each[key][0].metric_score]
return metric_dic
def compute_overall_score(metric_dic, experiment):
name, metric_weights, file_name, multiple_metrics, challenge_name = get_aggregator_config(experiment)
overall_score_dic = {}
total_scenario = 0
# average scores over all scenarios
for key in metric_dic.keys():
overall_score_dic[key] = np.mean(metric_dic[key].copy())
total_scenario = len(metric_dic[key])
print('Scores on each key: ', overall_score_dic)
scenario_scores = []
for i in range(total_scenario):
scenario_score = []
total_weights = []
multiplier = 1
for key in metric_dic.keys():
if key in metric_weights.keys():
scenario_score.append(metric_dic[key][i] * metric_weights[key])
total_weights.append(metric_weights[key])
elif key in multiple_metrics:
multiplier *= metric_dic[key][i]
else:
print('WARNING, unknown key ', key)
scenario_score.append(metric_dic[key][i])
total_weights.append(1.0)
# assert sum(total_weights) == 16, total_weights
scenario_scores.append(sum(scenario_score) / sum(total_weights) * multiplier)
print('Score per scenarios: ', scenario_scores)
return overall_score_dic, np.mean(scenario_scores)
def compute_overall_score_CLS(metric_dic):
overall_score_dic = {}
# average scores over all scenarios
for key in metric_dic.keys():
overall_score_dic[key] = np.mean(metric_dic[key].copy())
# score_list = []
weights = {
'ego_progress_along_expert_route': 5,
'time_to_collision_within_bound': 5,
'speed_limit_compliance': 4,
'ego_is_comfortable': 2
}
multiple_metrics = ['no_ego_at_fault_collisions', 'drivable_area_compliance',
'ego_is_making_progress', 'driving_direction_compliance']
print('Scores on each key: ', overall_score_dic)
# compute overall score with weights
total_scenario = len(metric_dic['ego_progress_along_expert_route'])
scenario_scores = []
for i in range(total_scenario):
scenario_score = []
total_weights = []
multiplier = 1
for key in metric_dic.keys():
if key in weights.keys():
scenario_score.append(metric_dic[key][i] * weights[key])
total_weights.append(weights[key])
elif key in multiple_metrics:
multiplier *= metric_dic[key][i]
else:
print('WARNING, unknown key ', key)
scenario_score.append(metric_dic[key][i])
total_weights.append(1.0)
assert sum(total_weights) == 16, total_weights
scenario_scores.append(sum(scenario_score) / sum(total_weights) * multiplier)
print('Score per scenarios: ', scenario_scores)
# for key in overall_score_dic.keys():
# if key in weights.keys():
# score_list.append(overall_score_dic[key] * weights[key])
# total_weights += weights[key]
# else:
# score_list.append(overall_score_dic[key])
# total_weights += 1
# return overall_score_dic, float(sum(score_list)) / total_weights
return overall_score_dic, np.mean(scenario_scores)
def compute_overall_score_OLS(metric_dic):
overall_score_dic = {}
# average scores over all scenarios
for key in metric_dic.keys():
overall_score_dic[key] = np.mean(metric_dic[key])
score_list = []
weights = {
'planner_expert_average_heading_error_within_bound': 2,
'planner_expert_final_heading_error_within_bound': 2,
}
print('Scores on each key: ', overall_score_dic)
# compute overall score with weights
total_weights = 0.0
for key in overall_score_dic.keys():
if key in weights.keys():
score_list.append(overall_score_dic[key] * weights[key])
total_weights += weights[key]
else:
score_list.append(overall_score_dic[key])
total_weights += 1
return overall_score_dic, float(sum(score_list)) / total_weights
class SimulationRunnerBatch(SimulationRunner):
"""
Overwrite the run method for testing large models with batches of scenarios.
"""
def __init__(self, simulations: Simulation, planners: AbstractPlanner, model=None):
"""
Initialize the simulations manager
:param simulation: Simulation which will be executed
:param planner: to be used to compute the desired ego's trajectory
"""
self._simulations = simulations
self._planners = planners
self._model = model
self._batch_size = len(simulations)
@property
def simulations(self):
return self._simulations
@property
def planners(self):
return self._planners
def _initialize(self) -> None:
"""
Initialize the planner
"""
# Execute specific callback
for i in range(self._batch_size):
self._simulations[i].callback.on_initialization_start(self._simulations[i].setup, self.planners[i])
for i in range(self._batch_size):
# Initialize Planner
if self._model is None:
# Initialize a model for the planner
self.planners[i].initialize(self._simulations[i].initialize(), model=None)
self._model = self.planners[i]._model
else:
# Reuse the same model
self.planners[i].initialize(self._simulations[i].initialize(), model=self._model)
# Execute specific callback
for i in range(self._batch_size):
self._simulations[i].callback.on_initialization_end(self._simulations[i].setup, self.planners[i])
def run(self) -> List[RunnerReport]:
"""
Run through all simulations. The steps of execution follow:
- Initialize all planners
- Step through simulations until there no running simulation
:return: List of SimulationReports containing the results of each simulation
"""
start_time = time.perf_counter()
debug = False
try:
debug = args.debug
except:
pass
# Initialize reports for all the simulations that will run
reports = [RunnerReport(
succeeded=True,
error_message=None,
start_time=start_time,
end_time=None,
planner_report=None,
scenario_name=self._simulations[i].scenario.scenario_name,
planner_name=self.planners[i].name(),
log_name=self._simulations[i].scenario.log_name,
) for i in range(self._batch_size)]
# Execute specific callback
for i in range(self._batch_size):
self._simulations[i].callback.on_simulation_start(self._simulations[i].setup)
# Initialize all simulations
self._initialize()
simulation_running = True
step = 0
while simulation_running:
# Execute specific callback
for i in range(self._batch_size):
self._simulations[i].callback.on_step_start(self._simulations[i].setup, self.planners[i])
# Perform step
planner_inputs = []
for i in range(self._batch_size):
planner_input = self._simulations[i].get_planner_input()
planner_inputs.append(planner_input)
# Execute specific callback
for i in tqdm(range(self._batch_size), desc='Step planner starting in batch', disable=not debug):
self._simulations[i].callback.on_planner_start(self._simulations[i].setup, self.planners[i])
model_sample_start_time = time.perf_counter()
model_samples = []
for i in tqdm(range(self._batch_size), desc='Step model inputs converting in batch', disable=not debug):
model_samples.append(self.planners[i].inputs_to_model_sample(
history=planner_inputs[i].history,
traffic_light_data=list(planner_inputs[i].traffic_light_data),
map_name=self.planners[i]._map_api.map_name,
))
# print(f'\nModel sample time: {time.perf_counter() - model_sample_start_time:.3f} s')
# pack in batch
samples_in_batch = {key: np.stack([sample[key] for sample in model_samples]) for key in model_samples[0].keys()}
planner_start_time = time.perf_counter()
# Plan path based on all planner's inputs
trajectories = self.planners[0].compute_planner_trajectory_in_batch(
model_samples=samples_in_batch,
map_names=[self.planners[i]._map_api.map_name for i in range(self._batch_size)],
ego_states_in_batch=[planner_inputs[i].history.ego_states for i in range(self._batch_size)],
route_ids=[self.planners[i]._route_roadblock_ids for i in range(self._batch_size)],
road_dics=[self.planners[i].road_dic for i in range(self._batch_size)],
)
for i in range(self._batch_size):
if i == 0:
continue
self.planners[i].iteration += 1
# print(f'Step {planner_inputs[0].iteration.index + 1} with timestamp {planner_inputs[0].iteration.time_s} Planning time: {time.perf_counter() - planner_start_time:.3f} s')
for i in range(self._batch_size):
# Propagate simulation based on planner trajectory
self._simulations[i].callback.on_planner_end(self._simulations[i].setup, self.planners[i], trajectories[i])
self._simulations[i].propagate(trajectories[i])
# Execute specific callback
self.simulations[i].callback.on_step_end(self.simulations[i].setup, self.planners[i], self.simulations[i].history.last())
# Store reports for simulations which just finished running
current_time = time.perf_counter()
if not self.simulations[i].is_simulation_running():
reports[i].end_time = current_time
# end loop if any simulation in the batch ends
simulation_running = simulation_running and self._simulations[i].is_simulation_running()
if self._model.config.simulate_one_step_on_training and self._model.training and step > 5:
# simulate one step on training
simulation_running = False
else:
step += 1
# Delete model to avoid crashes while saving the planner
for i in range(self._batch_size):
self.planners[i]._model = None
# Execute specific callback
self.simulations[i].callback.on_simulation_end(self.simulations[i].setup, self.planners[i], self.simulations[i].history)
planner_report = self.planners[i].generate_planner_report()
reports[i].planner_report = planner_report
return reports
def build_simulation_experiment_folder(output_dir, simulation_dir, metric_dir, aggregator_metric_dir):
"""
Builds the main experiment folder for simulation.
:return: The main experiment folder path.
"""
# print('Building experiment folders...')
exp_folder = pathlib.Path(output_dir)
print(f'\nFolder where all results are stored: {exp_folder}\n')
exp_folder.mkdir(parents=True, exist_ok=True)
# Build nuboard event file.
nuboard_filename = exp_folder / (f'nuboard_{int(time.time())}' + NuBoardFile.extension())
nuboard_file = NuBoardFile(
simulation_main_path=str(exp_folder),
simulation_folder=simulation_dir,
metric_main_path=str(exp_folder),
metric_folder=metric_dir,
aggregator_metric_folder=aggregator_metric_dir,
)
metric_main_path = exp_folder / metric_dir
metric_main_path.mkdir(parents=True, exist_ok=True)
nuboard_file.save_nuboard_file(nuboard_filename)
# print('Building experiment folders...DONE!')
return exp_folder.name
def build_simulation(experiment, planner, scenarios, output_dir, simulation_dir, metric_dir, save_reports=True):
runner_reports = []
print(f'Building simulations from {len(scenarios)} scenarios...')
metric_engine = build_metrics_engine(experiment, output_dir, metric_dir)
print('Building metric engines...DONE\n')
# Iterate through scenarios
for scenario in tqdm(scenarios, desc='Running simulation', disable=not args.debug):
# Ego Controller and Perception
if experiment == 'open_loop_boxes':
ego_controller = LogPlaybackController(scenario)
observations = TracksObservation(scenario)
elif experiment == 'closed_loop_nonreactive_agents':
tracker = LQRTracker(q_longitudinal=[10.0], r_longitudinal=[1.0], q_lateral=[1.0, 10.0, 0.0],
r_lateral=[1.0], discretization_time=0.1, tracking_horizon=10,
jerk_penalty=1e-4, curvature_rate_penalty=1e-2,
stopping_proportional_gain=0.5, stopping_velocity=0.2)
motion_model = KinematicBicycleModel(get_pacifica_parameters())
ego_controller = TwoStageController(scenario, tracker, motion_model)
observations = TracksObservation(scenario)
elif experiment == 'closed_loop_reactive_agents':
tracker = LQRTracker(q_longitudinal=[10.0], r_longitudinal=[1.0], q_lateral=[1.0, 10.0, 0.0],
r_lateral=[1.0], discretization_time=0.1, tracking_horizon=10,
jerk_penalty=1e-4, curvature_rate_penalty=1e-2,
stopping_proportional_gain=0.5, stopping_velocity=0.2)
motion_model = KinematicBicycleModel(get_pacifica_parameters())
ego_controller = TwoStageController(scenario, tracker, motion_model)
observations = IDMAgents(target_velocity=10, min_gap_to_lead_agent=1.0, headway_time=1.5,
accel_max=1.0, decel_max=2.0, scenario=scenario,
open_loop_detections_types=["PEDESTRIAN", "BARRIER", "CZONE_SIGN", "TRAFFIC_CONE",
"GENERIC_OBJECT"])
else:
raise ValueError(f"Invalid experiment type: {experiment}")
print('Running on scenario: ', scenario.token, scenario.get_number_of_iterations())
# Simulation Manager
simulation_time_controller = StepSimulationTimeController(scenario)
# Stateful callbacks
metric_callback = MetricCallback(metric_engine=metric_engine)
sim_log_callback = SimulationLogCallback(output_dir, simulation_dir, "msgpack")
# Construct simulation and manager
simulation_setup = SimulationSetup(
time_controller=simulation_time_controller,
observations=observations,
ego_controller=ego_controller,
scenario=scenario,
)
simulation = Simulation(
simulation_setup=simulation_setup,
callback=MultiCallback([metric_callback, sim_log_callback])
)
# Begin simulation
simulation_runner = SimulationRunner(simulation, planner)
report = simulation_runner.run()
runner_reports.append(report)
# save reports
save_runner_reports(runner_reports, output_dir, 'runner_reports')
# Notify user about the result of simulations
failed_simulations = str()
number_of_successful = 0
for result in runner_reports:
if result.succeeded:
number_of_successful += 1
else:
print("Failed Simulation.\n '%s'", result.error_message)
failed_simulations += f"[{result.log_name}, {result.scenario_name}] \n"
number_of_failures = len(scenarios) - number_of_successful
print(f"Number of successful simulations: {number_of_successful}")
print(f"Number of failed simulations: {number_of_failures}")
# Print out all failed simulation unique identifier
if number_of_failures > 0:
print(f"Failed simulations [log, token]:\n{failed_simulations}")
print('Finished running simulations!')
return runner_reports
def build_simulation_in_batch(experiment, scenarios, output_dir, simulation_dir, metric_dir, batch_size=32, model=None, args=None,
all_road_dic={}, save_reports=True, controller='two_stage_controller'):
runner_reports = []
# print(f'Building simulations from {len(scenarios)} scenarios...')
metric_engine = build_metrics_engine(experiment, output_dir, metric_dir)
# print('Building metric engines...DONE\n')
if len(scenarios) % batch_size > 0:
print(f"Batch size {batch_size} is not a divisor of the number of scenarios {len(scenarios)}, skipping the last batch.")
scenarios = scenarios[:-(len(scenarios) % batch_size)]
scenario_groups = [scenarios[i:i + batch_size] for i in range(0, len(scenarios), batch_size)]
global_model = None
over_all_metric_results = None
assert len(scenario_groups) > 0, f'no scenarios after filtering, check folder and yaml file.'
# Iterate through scenarios
for scenarios in tqdm(scenario_groups, desc='Running simulation'):
# running each batch of scenarios
# Initialize new planners for each scenario
if args is not None:
planners = [Planner(model_path=args.model_path, device=args.device, all_road_dic=all_road_dic, scenarios=scenarios) for _ in range(batch_size)]
else:
planners = [Planner(model_path=None, device=None, all_road_dic=all_road_dic, scenarios=scenarios) for _ in range(batch_size)]
# Initialize Ego Controller and Perception
if experiment == 'open_loop_boxes':
ego_controllers = [LogPlaybackController(scenario) for scenario in scenarios]
observations = [TracksObservation(scenario) for scenario in scenarios]
elif experiment == 'closed_loop_nonreactive_agents':
if controller == 'perfect_controller':
ego_controllers = [PerfectTrackingController(scenario) for scenario in scenarios]
else:
tracker = LQRTracker(q_longitudinal=[10.0], r_longitudinal=[1.0], q_lateral=[1.0, 10.0, 0.0],
r_lateral=[1.0], discretization_time=0.1, tracking_horizon=10,
jerk_penalty=1e-4, curvature_rate_penalty=1e-2,
stopping_proportional_gain=0.5, stopping_velocity=0.2)
motion_model = KinematicBicycleModel(get_pacifica_parameters())
ego_controllers = [TwoStageController(scenario, tracker, motion_model) for scenario in scenarios]
observations = [TracksObservation(scenario) for scenario in scenarios]
elif experiment == 'closed_loop_reactive_agents':
if controller == 'perfect_controller':
ego_controllers = [PerfectTrackingController(scenario) for scenario in scenarios]
else:
tracker = LQRTracker(q_longitudinal=[10.0], r_longitudinal=[1.0], q_lateral=[1.0, 10.0, 0.0],
r_lateral=[1.0], discretization_time=0.1, tracking_horizon=10,
jerk_penalty=1e-4, curvature_rate_penalty=1e-2,
stopping_proportional_gain=0.5, stopping_velocity=0.2)
motion_model = KinematicBicycleModel(get_pacifica_parameters())
ego_controllers = [TwoStageController(scenario, tracker, motion_model) for scenario in scenarios]
observations = [IDMAgents(target_velocity=10, min_gap_to_lead_agent=1.0, headway_time=1.5,
accel_max=1.0, decel_max=2.0, scenario=scenario,
open_loop_detections_types=["PEDESTRIAN", "BARRIER", "CZONE_SIGN", "TRAFFIC_CONE",
"GENERIC_OBJECT"]) for scenario in scenarios]
else:
raise ValueError(f"Invalid experiment type: {experiment}")
# print('Running on new batch scenario: ', len(scenarios), scenarios[0].token, scenarios[0].get_number_of_iterations())
# Simulation Manager
simulation_time_controllers = [StepSimulationTimeController(scenario) for scenario in scenarios]
# Stateful callbacks
metric_callbacks = [MetricCallback(metric_engine=metric_engine) for _ in range(batch_size)]
sim_log_callbacks = [SimulationLogCallback(output_dir, simulation_dir, "msgpack") for _ in range(batch_size)]
# Construct simulation and manager
simulation_setups = [SimulationSetup(
time_controller=simulation_time_controller,
observations=observation,
ego_controller=ego_controller,
scenario=scenario,
) for simulation_time_controller, observation, ego_controller, scenario in zip(simulation_time_controllers, observations, ego_controllers, scenarios)
]
simulations = [Simulation(
simulation_setup=simulation_setup,
callback=MultiCallback([metric_callback, sim_log_callback])
) for simulation_setup, metric_callback, sim_log_callback in zip(simulation_setups, metric_callbacks, sim_log_callbacks)
]
# Begin simulation
if model is not None:
global_model = model
if global_model is None:
simulation_runner = SimulationRunnerBatch(simulations, planners)
reports = simulation_runner.run()
global_model = simulation_runner._model
else:
simulation_runner = SimulationRunnerBatch(simulations, planners, global_model)
reports = simulation_runner.run()
# inspect reports
batch_metric_results = []
for i in range(len(reports)):
metric_callback = simulations[i].callback.callbacks[0]
metric_engine = metric_callback.metric_engine
metric_results = run_metric_engine(metric_engine, simulations[i].scenario, planners[i].name(), simulations[i].history)
batch_metric_results.append(metric_results)
over_all_metric_results = update_metric_results(
metric_dic=over_all_metric_results,
batch_metric_results=batch_metric_results
)
runner_reports += reports
# compute overall score
overall_score_dic, overall_score = compute_overall_score(over_all_metric_results, experiment)
print(f'Overall score: {overall_score}')
# save reports
if save_reports:
save_runner_reports(runner_reports, output_dir, 'runner_reports')
# Notify user about the result of simulations
failed_simulations = str()
number_of_successful = 0
for result in runner_reports:
if result.succeeded:
number_of_successful += 1
else:
print("Failed Simulation.\n '%s'", result.error_message)
failed_simulations += f"[{result.log_name}, {result.scenario_name}] \n"
number_of_failures = len(scenarios) - number_of_successful
print(f"Number of successful simulations: {number_of_successful}")
print(f"Number of failed simulations: {number_of_failures}")
# Print out all failed simulation unique identifier
if number_of_failures > 0:
print(f"Failed simulations [log, token]:\n{failed_simulations}")
print('Finished running simulations!')
return runner_reports, overall_score_dic, overall_score
def build_simulation_in_batch_multiprocess(experiment, scenarios, output_dir, simulation_dir, metric_dir, batch_size=32, model=None, args=None,
all_road_dic={}, save_reports=True, controller='two_stage_controller'):
runner_reports = []
# print(f'Building simulations from {len(scenarios)} scenarios...')
metric_engine = build_metrics_engine(experiment, output_dir, metric_dir)
# print('Building metric engines...DONE\n')
if len(scenarios) % batch_size > 0:
print(f"Batch size {batch_size} is not a divisor of the number of scenarios {len(scenarios)}, skipping the last batch.")
scenarios = scenarios[:-(len(scenarios) % batch_size)]
scenario_groups = [scenarios[i:i + batch_size] for i in range(0, len(scenarios), batch_size)]
over_all_metric_results = None
assert len(scenario_groups) > 0, f'no scenarios after filtering, check folder and yaml file.'
# multi-processing
rep_cnt = args.processes_repetition
gpu_cnt = torch.cuda.device_count()
process_cnt = gpu_cnt * rep_cnt
# processes resources
tasks_queue = mp.Queue()
results_queue = mp.Queue()
locks = [mp.Lock() for _ in range(gpu_cnt)]
# global model
model_planner = Planner(args.model_path, 'cpu')
model_planner._initialize_model()
global_model = model_planner._model
_time = time.time()
global_model_cuda = [copy.deepcopy(global_model).to(f'cuda:{i}') for i in range(gpu_cnt)]
global_model_with_lock = [_inject_model(model, lock) for model, lock in zip(global_model_cuda, locks)]
print(f'Loading model time: {time.time()-_time:.2f} s.')
# process init
processes = []
for i in tqdm(list(range(process_cnt)), desc='Starting Multi-Processes'):
gpu_idx = i % gpu_cnt
p = mp.Process(target=Worker(global_model_with_lock[gpu_idx], gpu_idx, locks[gpu_idx]), args=(tasks_queue, results_queue))
p.start()
processes.append(p)
print('start putting tasks to queue')
# Iterate through scenarios
N = len(scenario_groups)
for scenarios in scenario_groups:
tasks_queue.put((scenarios, all_road_dic, batch_size, experiment, controller, output_dir, simulation_dir, metric_engine))
for _ in range(process_cnt):
tasks_queue.put(None)
print('start fetching results from queue')
# fetch results
failed_scenarios = []
for _ in tqdm(list(range(N)), desc='Fetch Results'):
is_succ, ret_msg = results_queue.get()
if not is_succ:
error_str = (f'Exception caught in scenario: {_}\n'
f'Error message: {ret_msg}')
print(error_str)
failed_scenarios.append(error_str)
continue
batch_metric_results, reports = ret_msg
over_all_metric_results = update_metric_results(
metric_dic=over_all_metric_results,
batch_metric_results=batch_metric_results
)
runner_reports += reports
if failed_scenarios:
err_file = 'err_scenarios.log'
print(f'{len(failed_scenarios)} scenarios failed during simulation.\n'
f'writting to {err_file}.')
with open(err_file, 'w') as f:
for err_msg in failed_scenarios:
f.write(f"{err_msg}\n\n")
# finish
[p.join() for p in processes]
# compute overall score
overall_score_dic, overall_score = compute_overall_score(over_all_metric_results, experiment)
print(f'Overall score: {overall_score}')
# save reports
if save_reports:
save_runner_reports(runner_reports, output_dir, 'runner_reports')
# Notify user about the result of simulations
failed_simulations = str()
number_of_successful = 0
for result in runner_reports:
if result.succeeded:
number_of_successful += 1
else:
print("Failed Simulation.\n '%s'", result.error_message)
failed_simulations += f"[{result.log_name}, {result.scenario_name}] \n"
number_of_failures = len(scenarios) - number_of_successful
print(f"Number of successful simulations: {number_of_successful}")
print(f"Number of failed simulations: {number_of_failures}")
# Print out all failed simulation unique identifier
if number_of_failures > 0:
print(f"Failed simulations [log, token]:\n{failed_simulations}")
print('Finished running simulations!')
return runner_reports, overall_score_dic, overall_score
class Worker():
def __init__(self, model, gpu_idx, lock):
self.model = model
def __call__(self, tasks_queue, results_queue):
while True:
task = tasks_queue.get()
if task is None:
break
try:
result = (True, _worker_func(*task, self.model))
except Exception as e:
result = (False, str(e))
results_queue.put(result)
def _generate(self, func, lock, *args, **kwargs):
lock.acquire()
try:
return func(*args, **kwargs)
except Exception as e:
raise e
finally:
lock.release()
def _inject_model(model, lock):
model.generate = functools.partial(_generate, model, model.generate, lock)
return model
def _worker_func(scenarios, all_road_dic, batch_size, experiment, controller, output_dir, simulation_dir, metric_engine, global_model):
# running each batch of scenarios
# Initialize new planners for each scenario
planners = [Planner(model_path=None, device=None, all_road_dic=all_road_dic, scenarios=scenarios) for _ in range(batch_size)]
# Initialize Ego Controller and Perception
if experiment == 'open_loop_boxes':
ego_controllers = [LogPlaybackController(scenario) for scenario in scenarios]
observations = [TracksObservation(scenario) for scenario in scenarios]
elif experiment == 'closed_loop_nonreactive_agents':
if controller == 'perfect_controller':
ego_controllers = [PerfectTrackingController(scenario) for scenario in scenarios]
else:
tracker = LQRTracker(q_longitudinal=[10.0], r_longitudinal=[1.0], q_lateral=[1.0, 10.0, 0.0],
r_lateral=[1.0], discretization_time=0.1, tracking_horizon=10,
jerk_penalty=1e-4, curvature_rate_penalty=1e-2,
stopping_proportional_gain=0.5, stopping_velocity=0.2)
motion_model = KinematicBicycleModel(get_pacifica_parameters())
ego_controllers = [TwoStageController(scenario, tracker, motion_model) for scenario in scenarios]
observations = [TracksObservation(scenario) for scenario in scenarios]
elif experiment == 'closed_loop_reactive_agents':
if controller == 'perfect_controller':
ego_controllers = [PerfectTrackingController(scenario) for scenario in scenarios]
else:
tracker = LQRTracker(q_longitudinal=[10.0], r_longitudinal=[1.0], q_lateral=[1.0, 10.0, 0.0],
r_lateral=[1.0], discretization_time=0.1, tracking_horizon=10,
jerk_penalty=1e-4, curvature_rate_penalty=1e-2,
stopping_proportional_gain=0.5, stopping_velocity=0.2)
motion_model = KinematicBicycleModel(get_pacifica_parameters())
ego_controllers = [TwoStageController(scenario, tracker, motion_model) for scenario in scenarios]
observations = [IDMAgents(target_velocity=10, min_gap_to_lead_agent=1.0, headway_time=1.5,
accel_max=1.0, decel_max=2.0, scenario=scenario,
open_loop_detections_types=["PEDESTRIAN", "BARRIER", "CZONE_SIGN", "TRAFFIC_CONE",
"GENERIC_OBJECT"]) for scenario in scenarios]
else:
raise ValueError(f"Invalid experiment type: {experiment}")
# print('Running on new batch scenario: ', len(scenarios), scenarios[0].token, scenarios[0].get_number_of_iterations())
# Simulation Manager
simulation_time_controllers = [StepSimulationTimeController(scenario) for scenario in scenarios]
# Stateful callbacks
metric_callbacks = [MetricCallback(metric_engine=metric_engine) for _ in range(batch_size)]
sim_log_callbacks = [SimulationLogCallback(output_dir, simulation_dir, "msgpack") for _ in range(batch_size)]
# Construct simulation and manager
simulation_setups = [SimulationSetup(
time_controller=simulation_time_controller,
observations=observation,
ego_controller=ego_controller,
scenario=scenario,
) for simulation_time_controller, observation, ego_controller, scenario in zip(simulation_time_controllers, observations, ego_controllers, scenarios)
]
simulations = [Simulation(
simulation_setup=simulation_setup,
callback=MultiCallback([metric_callback, sim_log_callback])
) for simulation_setup, metric_callback, sim_log_callback in zip(simulation_setups, metric_callbacks, sim_log_callbacks)
]
# Begin simulation
simulation_runner = SimulationRunnerBatch(simulations, planners, global_model)
reports = simulation_runner.run()
# inspect reports
batch_metric_results = []
for i in range(len(reports)):
metric_callback = simulations[i].callback.callbacks[0]
metric_engine = metric_callback.metric_engine
metric_results = run_metric_engine(metric_engine, simulations[i].scenario, planners[i].name(), simulations[i].history)
batch_metric_results.append(metric_results)
return batch_metric_results, reports
def build_nuboard(scenario_builder, simulation_path):
nuboard = NuBoard(
nuboard_paths=simulation_path,
scenario_builder=scenario_builder,
vehicle_parameters=get_pacifica_parameters(),
port_number=5006
)
nuboard.run()
def main(args):
# parameters
experiment_name = args.test_type # [open_loop_boxes, closed_loop_nonreactive_agents, closed_loop_reactive_agents]
job_name = 'STR_planner'
experiment_time = args.exp_folder if args.exp_folder is not None else datetime.datetime.now()
experiment = f"{experiment_name}/{job_name}/{experiment_time}"
output_dir = f"testing_log/{experiment}"
simulation_dir = "simulation"
metric_dir = "metrics"
aggregator_metric_dir = "aggregator_metric"
# initialize planner
torch.set_grad_enabled(False)
# initialize main aggregator
metric_aggregators = build_metrics_aggregators(experiment_name, output_dir, aggregator_metric_dir)
metric_save_path = f"{output_dir}/{metric_dir}"
metric_aggregator_callback = MetricAggregatorCallback(metric_save_path, metric_aggregators)
metric_file_callback = MetricFileCallback(metric_file_output_path=f"{output_dir}/{metric_dir}",
scenario_metric_paths=[f"{output_dir}/{metric_dir}"],
delete_scenario_metric_files=True)
metric_summary_callback = MetricSummaryCallback(metric_save_path=f"{output_dir}/{metric_dir}",
metric_aggregator_save_path=f"{output_dir}/{aggregator_metric_dir}",
summary_output_path=f"{output_dir}/summary",
num_bins=20, pdf_file_name='summary.pdf')
main_callbacks = MultiMainCallback([metric_file_callback, metric_aggregator_callback, metric_summary_callback])
main_callbacks.on_run_simulation_start()
# build simulation folder
build_simulation_experiment_folder(output_dir, simulation_dir, metric_dir, aggregator_metric_dir)
# build scenarios
print('Extracting scenarios...', args.load_without_yaml)
map_version = "nuplan-maps-v1.0"
scenario_mapping = ScenarioMapping(scenario_map=get_scenario_map(), subsample_ratio_override=0.5)
builder = NuPlanScenarioBuilder(args.data_path, args.map_path, None, None, map_version, scenario_mapping=scenario_mapping)
if not args.load_without_yaml:
print('Filtering with yaml file...')
params = yaml.safe_load(open(args.split_filter_yaml, 'r'))
scenario_filter = ScenarioFilter(**params)
else:
print('Filtering with types ...')
scenario_filter = ScenarioFilter(*get_filter_parameters(args.scenarios_per_type))
worker = SingleMachineParallelExecutor(use_process_pool=False)
scenarios = builder.get_scenarios(scenario_filter, worker)
print('Got scenarios ', len(scenarios))
if args.max_scenario_num > 0:
scenarios = scenarios[:args.max_scenario_num]
if args.board_only_log_path is not None:
output_dir = args.board_only_log_path
simulation_file = [str(file) for file in pathlib.Path(output_dir).iterdir() if
file.is_file() and file.suffix == '.nuboard']
# show metrics and scenarios
build_nuboard(builder, simulation_file)
return
# begin testing
print('Running simulations...')
if args.batch_size < 1:
planner = Planner(model_path=args.model_path, device=args.device)
build_simulation(experiment_name, planner, scenarios, output_dir, simulation_dir, metric_dir)
else:
build_simulation_in_batch_multiprocess(experiment_name, scenarios, output_dir, simulation_dir, metric_dir, args.batch_size, args=args)
main_callbacks.on_run_simulation_end()
simulation_file = [str(file) for file in pathlib.Path(output_dir).iterdir() if
file.is_file() and file.suffix == '.nuboard']
# show metrics and scenarios
build_nuboard(builder, simulation_file)
# use ssh with port forwarding to view the nuboard
# example: ssh -p 3022* -L 5006:localhost:5006 [email protected]*
if __name__ == "__main__":
mp.set_start_method('spawn', force=True)
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', type=str)
parser.add_argument('--map_path', type=str)
parser.add_argument('--model_path', type=str)
parser.add_argument('--exp_folder', type=str, default=None)
parser.add_argument('--test_type', type=str, default='closed_loop_nonreactive_agents')
parser.add_argument('--load_without_yaml', action='store_true')
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--scenarios_per_type', type=int, default=20)
parser.add_argument('--nuplan_exp_root', type=str, default='/cephfs/sunq/nuplan/dataset')
parser.add_argument('--split_filter_yaml', type=str, default='/cephfs/sunq/StateTransformer/nuplan_simulation/test_split.yaml')
parser.add_argument('--batch_size', type=int, default=0)
parser.add_argument('--max_scenario_num', type=int, default=-1)
parser.add_argument('--debug', action='store_true')
parser.add_argument('--board_only_log_path', type=str, default=None)
parser.add_argument('--processes-repetition', type=int, default=1)
args = parser.parse_args()
os.environ['NUPLAN_EXP_ROOT'] = args.nuplan_exp_root
main(args)