A pytorch implementation of this paper (COLING 2022).
pip install -r requirements.txt
extract ps1_model, ps2_model, qa_model files into PS1/ps1_model, PS2/ps2_model, QA/qa_model
- Inference
run_predict.sh
You may get the following results on the dev set with albert-xxlarge-v2 fine-tuned model:
'em': 0.7161377447670493,
'f1': 0.8463122674418365,
'sp_em': 0.6568534773801485,
'sp_f1': 0.8959317837238392,
'joint_em': 0.49817690749493587,
'joint_f1': 0.770930315635879,
If you use this code useful, please star our repo or consider citing:
@inproceedings{deng-etal-2022-prompt,
title = "Prompt-based Conservation Learning for Multi-hop Question Answering",
author = "Deng, Zhenyun and
Zhu, Yonghua and
Chen, Yang and
Qi, Qianqian and
Witbrock, Michael and
Riddle, Patricia",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2022.coling-1.154",
pages = "1791--1800",
}