-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrunNominalAlgorithm.m
29 lines (24 loc) · 1.1 KB
/
runNominalAlgorithm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
function [output] = runNominalAlgorithm(timeStepSize, endTime, kwargs)
% Analysis of the solution found by the shortestpath solver for no
% uncertainty, appearing on (Rist et al., 2017).
%
arguments
timeStepSize (1,1) double {mustBePositive} = 15 % length of a timestep in [s]
endTime (1,1) double {mustBePositive} = 24; % final time in [h]
% Parameter for first uncertainty set.
% In equation (6) in the paper, we take:
% Delta_P(t) = alpha_Linfty*std_P(t)
% Delta_H(t) = alpha_Linfty*std_H(t).
kwargs.PriceIndex (1,1) double {mustBePositive} = 2;
kwargs.BuildingType (1,1) BuildingType {mustBePositive} = BuildingType.ResidentialHIGH;
kwargs.dataPath (1,1) string = "../Data"
kwargs.transitionPenalty (1,1) double = 0.01;
kwargs.powerScalingFactor (1,1) double = NaN;
end
ABSOLUTE_CERTAINTY_ALPHA = 0;
args = namedargs2cell(kwargs);
output = runRobustLinftyAlgorithm( timeStepSize, endTime, args{:}, ...
'alpha', ABSOLUTE_CERTAINTY_ALPHA);
output.AlgorithmType = AlgorithmType.Nominal;
output.AlgorithmParameters{1} = [];
end