-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathderived_laws.v
373 lines (339 loc) · 14.6 KB
/
derived_laws.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
(** This file extends the HeapLang program logic with some derived laws (not
using the lifting lemmas) about arrays and prophecies.
For utility functions on arrays (e.g., freeing/copying an array), see
[heap_lang.lib.array]. *)
From stdpp Require Import fin_maps.
From iris.bi Require Import lib.fractional.
From iris.proofmode Require Import tactics.
From iris.heap_lang Require Export primitive_laws.
From iris.heap_lang Require Import tactics notation.
From iris.prelude Require Import options.
(** The [array] connective is a version of [mapsto] that works
with lists of values. *)
Definition array `{!heapG Σ} (l : loc) (dq : dfrac) (vs : list val) : iProp Σ :=
([∗ list] i ↦ v ∈ vs, (l +ₗ i) ↦{dq} v)%I.
(** FIXME: Refactor these notations using custom entries once Coq bug #13654
has been fixed. *)
Notation "l ↦∗{ dq } vs" := (array l dq vs)
(at level 20, format "l ↦∗{ dq } vs") : bi_scope.
Notation "l ↦∗□ vs" := (array l DfracDiscarded vs)
(at level 20, format "l ↦∗□ vs") : bi_scope.
Notation "l ↦∗{# q } vs" := (array l (DfracOwn q) vs)
(at level 20, format "l ↦∗{# q } vs") : bi_scope.
Notation "l ↦∗ vs" := (array l (DfracOwn 1) vs)
(at level 20, format "l ↦∗ vs") : bi_scope.
(** We have [FromSep] and [IntoSep] instances to split the fraction (via the
[AsFractional] instance below), but not for splitting the list, as that would
lead to overlapping instances. *)
Section lifting.
Context `{!heapG Σ}.
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val → iProp Σ.
Implicit Types σ : state.
Implicit Types v : val.
Implicit Types vs : list val.
Implicit Types l : loc.
Implicit Types sz off : nat.
Global Instance array_timeless l q vs : Timeless (array l q vs) := _.
Global Instance array_fractional l vs : Fractional (λ q, l ↦∗{#q} vs)%I := _.
Global Instance array_as_fractional l q vs :
AsFractional (l ↦∗{#q} vs) (λ q, l ↦∗{#q} vs)%I q.
Proof. split; done || apply _. Qed.
Lemma array_nil l dq : l ↦∗{dq} [] ⊣⊢ emp.
Proof. by rewrite /array. Qed.
Lemma array_singleton l dq v : l ↦∗{dq} [v] ⊣⊢ l ↦{dq} v.
Proof. by rewrite /array /= right_id loc_add_0. Qed.
Lemma array_app l dq vs ws :
l ↦∗{dq} (vs ++ ws) ⊣⊢ l ↦∗{dq} vs ∗ (l +ₗ length vs) ↦∗{dq} ws.
Proof.
rewrite /array big_sepL_app.
setoid_rewrite Nat2Z.inj_add.
by setoid_rewrite loc_add_assoc.
Qed.
Lemma array_cons l dq v vs : l ↦∗{dq} (v :: vs) ⊣⊢ l ↦{dq} v ∗ (l +ₗ 1) ↦∗{dq} vs.
Proof.
rewrite /array big_sepL_cons loc_add_0.
setoid_rewrite loc_add_assoc.
setoid_rewrite Nat2Z.inj_succ.
by setoid_rewrite Z.add_1_l.
Qed.
Global Instance array_cons_frame l dq v vs R Q :
Frame false R (l ↦{dq} v ∗ (l +ₗ 1) ↦∗{dq} vs) Q →
Frame false R (l ↦∗{dq} (v :: vs)) Q.
Proof. by rewrite /Frame array_cons. Qed.
Lemma update_array l dq vs off v :
vs !! off = Some v →
⊢ l ↦∗{dq} vs -∗ ((l +ₗ off) ↦{dq} v ∗ ∀ v', (l +ₗ off) ↦{dq} v' -∗ l ↦∗{dq} <[off:=v']>vs).
Proof.
iIntros (Hlookup) "Hl".
rewrite -[X in (l ↦∗{_} X)%I](take_drop_middle _ off v); last done.
iDestruct (array_app with "Hl") as "[Hl1 Hl]".
iDestruct (array_cons with "Hl") as "[Hl2 Hl3]".
assert (off < length vs) as H by (apply lookup_lt_is_Some; by eexists).
rewrite take_length min_l; last by lia. iFrame "Hl2".
iIntros (w) "Hl2".
clear Hlookup. assert (<[off:=w]> vs !! off = Some w) as Hlookup.
{ apply list_lookup_insert. lia. }
rewrite -[in (l ↦∗{_} <[off:=w]> vs)%I](take_drop_middle (<[off:=w]> vs) off w Hlookup).
iApply array_app. rewrite take_insert; last by lia. iFrame.
iApply array_cons. rewrite take_length min_l; last by lia. iFrame.
rewrite drop_insert_gt; last by lia. done.
Qed.
(** * Rules for allocation *)
Lemma mapsto_seq_array l dq v n :
([∗ list] i ∈ seq 0 n, (l +ₗ (i : nat)) ↦{dq} v) -∗
l ↦∗{dq} replicate n v.
Proof.
rewrite /array. iInduction n as [|n'] "IH" forall (l); simpl.
{ done. }
iIntros "[$ Hl]". rewrite -fmap_S_seq big_sepL_fmap.
setoid_rewrite Nat2Z.inj_succ. setoid_rewrite <-Z.add_1_l.
setoid_rewrite <-loc_add_assoc. iApply "IH". done.
Qed.
Lemma twp_allocN s E v n :
(0 < n)%Z →
[[{ True }]] AllocN (Val $ LitV $ LitInt $ n) (Val v) @ s; E
[[{ l, RET LitV (LitLoc l); ⌜l ≠ null_loc⌝ ∗ l ↦∗ replicate (Z.to_nat n) v ∗
[∗ list] i ∈ seq 0 (Z.to_nat n), meta_token (l +ₗ (i : nat)) ⊤ }]].
Proof.
iIntros (Hzs Φ) "_ HΦ". iApply twp_allocN_seq; [done..|].
iIntros (l) "[A Hlm]". iApply "HΦ".
iSplitL "A"; first by iFrame.
iDestruct (big_sepL_sep with "Hlm") as "[Hl $]".
by iApply mapsto_seq_array.
Qed.
Lemma wp_allocN s E v n :
(0 < n)%Z →
{{{ True }}} AllocN (Val $ LitV $ LitInt $ n) (Val v) @ s; E
{{{ l, RET LitV (LitLoc l); ⌜l ≠ null_loc⌝ ∗ l ↦∗ replicate (Z.to_nat n) v ∗
[∗ list] i ∈ seq 0 (Z.to_nat n), meta_token (l +ₗ (i : nat)) ⊤ }}}.
Proof.
iIntros (? Φ) "_ HΦ". iApply (twp_wp_step with "HΦ").
iApply twp_allocN; [auto..|]; iIntros (l) "H HΦ". by iApply "HΦ".
Qed.
Lemma twp_allocN_vec s E v n :
(0 < n)%Z →
[[{ True }]]
AllocN #n v @ s ; E
[[{ l, RET #l; l ↦∗ vreplicate (Z.to_nat n) v ∗
[∗ list] i ∈ seq 0 (Z.to_nat n), meta_token (l +ₗ (i : nat)) ⊤ }]].
Proof.
iIntros (Hzs Φ) "_ HΦ". iApply twp_allocN; [ lia | done | .. ].
iIntros (l) "[Hl Hm]". iApply "HΦ". rewrite vec_to_list_replicate. iFrame.
Qed.
Lemma wp_allocN_vec s E v n :
(0 < n)%Z →
{{{ True }}}
AllocN #n v @ s ; E
{{{ l, RET #l; l ↦∗ vreplicate (Z.to_nat n) v ∗
[∗ list] i ∈ seq 0 (Z.to_nat n), meta_token (l +ₗ (i : nat)) ⊤ }}}.
Proof.
iIntros (? Φ) "_ HΦ". iApply (twp_wp_step with "HΦ").
iApply twp_allocN_vec; [auto..|]; iIntros (l) "H HΦ". by iApply "HΦ".
Qed.
(** * Rules for accessing array elements *)
Lemma twp_load_offset s E l dq off vs v :
vs !! off = Some v →
[[{ l ↦∗{dq} vs }]] ! #(l +ₗ off) @ s; E [[{ RET v; l ↦∗{dq} vs }]].
Proof.
iIntros (Hlookup Φ) "Hl HΦ".
iDestruct (update_array l _ _ _ _ Hlookup with "Hl") as "[Hl1 Hl2]".
iApply (twp_load with "Hl1"). iIntros "Hl1". iApply "HΦ".
iDestruct ("Hl2" $! v) as "Hl2". rewrite list_insert_id; last done.
iApply "Hl2". iApply "Hl1".
Qed.
Lemma wp_load_offset s E l dq off vs v :
vs !! off = Some v →
{{{ ▷ l ↦∗{dq} vs }}} ! #(l +ₗ off) @ s; E {{{ RET v; l ↦∗{dq} vs }}}.
Proof.
iIntros (? Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
iApply (twp_load_offset with "H"); [eauto..|]; iIntros "H HΦ". by iApply "HΦ".
Qed.
Lemma twp_load_offset_vec s E l dq sz (off : fin sz) (vs : vec val sz) :
[[{ l ↦∗{dq} vs }]] ! #(l +ₗ off) @ s; E [[{ RET vs !!! off; l ↦∗{dq} vs }]].
Proof. apply twp_load_offset. by apply vlookup_lookup. Qed.
Lemma wp_load_offset_vec s E l dq sz (off : fin sz) (vs : vec val sz) :
{{{ ▷ l ↦∗{dq} vs }}} ! #(l +ₗ off) @ s; E {{{ RET vs !!! off; l ↦∗{dq} vs }}}.
Proof. apply wp_load_offset. by apply vlookup_lookup. Qed.
Lemma twp_store_offset s E l off vs v :
is_Some (vs !! off) →
[[{ l ↦∗ vs }]] #(l +ₗ off) <- v @ s; E [[{ RET #(); l ↦∗ <[off:=v]> vs }]].
Proof.
iIntros ([w Hlookup] Φ) "Hl HΦ".
iDestruct (update_array l _ _ _ _ Hlookup with "Hl") as "[Hl1 Hl2]".
iApply (twp_store with "Hl1"). iIntros "Hl1".
iApply "HΦ". iApply "Hl2". iApply "Hl1".
Qed.
Lemma wp_store_offset s E l off vs v :
is_Some (vs !! off) →
{{{ ▷ l ↦∗ vs }}} #(l +ₗ off) <- v @ s; E {{{ RET #(); l ↦∗ <[off:=v]> vs }}}.
Proof.
iIntros (? Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
iApply (twp_store_offset with "H"); [eauto..|]; iIntros "H HΦ". by iApply "HΦ".
Qed.
Lemma twp_store_offset_vec s E l sz (off : fin sz) (vs : vec val sz) v :
[[{ l ↦∗ vs }]] #(l +ₗ off) <- v @ s; E [[{ RET #(); l ↦∗ vinsert off v vs }]].
Proof.
setoid_rewrite vec_to_list_insert. apply twp_store_offset.
eexists. by apply vlookup_lookup.
Qed.
Lemma wp_store_offset_vec s E l sz (off : fin sz) (vs : vec val sz) v :
{{{ ▷ l ↦∗ vs }}} #(l +ₗ off) <- v @ s; E {{{ RET #(); l ↦∗ vinsert off v vs }}}.
Proof.
iIntros (Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
iApply (twp_store_offset_vec with "H"); [eauto..|]; iIntros "H HΦ". by iApply "HΦ".
Qed.
Lemma twp_cmpxchg_suc_offset s E l off vs v' v1 v2 :
vs !! off = Some v' →
v' = v1 →
vals_compare_safe v' v1 →
[[{ l ↦∗ vs }]]
CmpXchg #(l +ₗ off) v1 v2 @ s; E
[[{ RET (v', #true); l ↦∗ <[off:=v2]> vs }]].
Proof.
iIntros (Hlookup ?? Φ) "Hl HΦ".
iDestruct (update_array l _ _ _ _ Hlookup with "Hl") as "[Hl1 Hl2]".
iApply (twp_cmpxchg_suc with "Hl1"); [done..|].
iIntros "Hl1". iApply "HΦ". iApply "Hl2". iApply "Hl1".
Qed.
Lemma wp_cmpxchg_suc_offset s E l off vs v' v1 v2 :
vs !! off = Some v' →
v' = v1 →
vals_compare_safe v' v1 →
{{{ ▷ l ↦∗ vs }}}
CmpXchg #(l +ₗ off) v1 v2 @ s; E
{{{ RET (v', #true); l ↦∗ <[off:=v2]> vs }}}.
Proof.
iIntros (??? Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
iApply (twp_cmpxchg_suc_offset with "H"); [eauto..|]; iIntros "H HΦ". by iApply "HΦ".
Qed.
Lemma twp_cmpxchg_suc_offset_vec s E l sz (off : fin sz) (vs : vec val sz) v1 v2 :
vs !!! off = v1 →
vals_compare_safe (vs !!! off) v1 →
[[{ l ↦∗ vs }]]
CmpXchg #(l +ₗ off) v1 v2 @ s; E
[[{ RET (vs !!! off, #true); l ↦∗ vinsert off v2 vs }]].
Proof.
intros. setoid_rewrite vec_to_list_insert. eapply twp_cmpxchg_suc_offset=> //.
by apply vlookup_lookup.
Qed.
Lemma wp_cmpxchg_suc_offset_vec s E l sz (off : fin sz) (vs : vec val sz) v1 v2 :
vs !!! off = v1 →
vals_compare_safe (vs !!! off) v1 →
{{{ ▷ l ↦∗ vs }}}
CmpXchg #(l +ₗ off) v1 v2 @ s; E
{{{ RET (vs !!! off, #true); l ↦∗ vinsert off v2 vs }}}.
Proof.
iIntros (?? Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
iApply (twp_cmpxchg_suc_offset_vec with "H"); [eauto..|]; iIntros "H HΦ". by iApply "HΦ".
Qed.
Lemma twp_cmpxchg_fail_offset s E l dq off vs v0 v1 v2 :
vs !! off = Some v0 →
v0 ≠ v1 →
vals_compare_safe v0 v1 →
[[{ l ↦∗{dq} vs }]]
CmpXchg #(l +ₗ off) v1 v2 @ s; E
[[{ RET (v0, #false); l ↦∗{dq} vs }]].
Proof.
iIntros (Hlookup HNEq Hcmp Φ) "Hl HΦ".
iDestruct (update_array l _ _ _ _ Hlookup with "Hl") as "[Hl1 Hl2]".
iApply (twp_cmpxchg_fail with "Hl1"); first done.
{ destruct Hcmp; by [ left | right ]. }
iIntros "Hl1". iApply "HΦ". iDestruct ("Hl2" $! v0) as "Hl2".
rewrite list_insert_id; last done. iApply "Hl2". iApply "Hl1".
Qed.
Lemma wp_cmpxchg_fail_offset s E l dq off vs v0 v1 v2 :
vs !! off = Some v0 →
v0 ≠ v1 →
vals_compare_safe v0 v1 →
{{{ ▷ l ↦∗{dq} vs }}}
CmpXchg #(l +ₗ off) v1 v2 @ s; E
{{{ RET (v0, #false); l ↦∗{dq} vs }}}.
Proof.
iIntros (??? Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
iApply (twp_cmpxchg_fail_offset with "H"); [eauto..|]; iIntros "H HΦ". by iApply "HΦ".
Qed.
Lemma twp_cmpxchg_fail_offset_vec s E l dq sz (off : fin sz) (vs : vec val sz) v1 v2 :
vs !!! off ≠ v1 →
vals_compare_safe (vs !!! off) v1 →
[[{ l ↦∗{dq} vs }]]
CmpXchg #(l +ₗ off) v1 v2 @ s; E
[[{ RET (vs !!! off, #false); l ↦∗{dq} vs }]].
Proof. intros. eapply twp_cmpxchg_fail_offset=> //. by apply vlookup_lookup. Qed.
Lemma wp_cmpxchg_fail_offset_vec s E l dq sz (off : fin sz) (vs : vec val sz) v1 v2 :
vs !!! off ≠ v1 →
vals_compare_safe (vs !!! off) v1 →
{{{ ▷ l ↦∗{dq} vs }}}
CmpXchg #(l +ₗ off) v1 v2 @ s; E
{{{ RET (vs !!! off, #false); l ↦∗{dq} vs }}}.
Proof. intros. eapply wp_cmpxchg_fail_offset=> //. by apply vlookup_lookup. Qed.
Lemma twp_faa_offset s E l off vs (i1 i2 : Z) :
vs !! off = Some #i1 →
[[{ l ↦∗ vs }]] FAA #(l +ₗ off) #i2 @ s; E
[[{ RET LitV (LitInt i1); l ↦∗ <[off:=#(i1 + i2)]> vs }]].
Proof.
iIntros (Hlookup Φ) "Hl HΦ".
iDestruct (update_array l _ _ _ _ Hlookup with "Hl") as "[Hl1 Hl2]".
iApply (twp_faa with "Hl1").
iIntros "Hl1". iApply "HΦ". iApply "Hl2". iApply "Hl1".
Qed.
Lemma wp_faa_offset s E l off vs (i1 i2 : Z) :
vs !! off = Some #i1 →
{{{ ▷ l ↦∗ vs }}} FAA #(l +ₗ off) #i2 @ s; E
{{{ RET LitV (LitInt i1); l ↦∗ <[off:=#(i1 + i2)]> vs }}}.
Proof.
iIntros (? Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
iApply (twp_faa_offset with "H"); [eauto..|]; iIntros "H HΦ". by iApply "HΦ".
Qed.
Lemma twp_faa_offset_vec s E l sz (off : fin sz) (vs : vec val sz) (i1 i2 : Z) :
vs !!! off = #i1 →
[[{ l ↦∗ vs }]] FAA #(l +ₗ off) #i2 @ s; E
[[{ RET LitV (LitInt i1); l ↦∗ vinsert off #(i1 + i2) vs }]].
Proof.
intros. setoid_rewrite vec_to_list_insert. apply twp_faa_offset=> //.
by apply vlookup_lookup.
Qed.
Lemma wp_faa_offset_vec s E l sz (off : fin sz) (vs : vec val sz) (i1 i2 : Z) :
vs !!! off = #i1 →
{{{ ▷ l ↦∗ vs }}} FAA #(l +ₗ off) #i2 @ s; E
{{{ RET LitV (LitInt i1); l ↦∗ vinsert off #(i1 + i2) vs }}}.
Proof.
iIntros (? Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
iApply (twp_faa_offset_vec with "H"); [eauto..|]; iIntros "H HΦ". by iApply "HΦ".
Qed.
(** Derived prophecy laws *)
(** Lemmas for some particular expression inside the [Resolve]. *)
Lemma wp_resolve_proph s E (p : proph_id) (pvs : list (val * val)) v :
{{{ proph p pvs }}}
ResolveProph (Val $ LitV $ LitProphecy p) (Val v) @ s; E
{{{ pvs', RET (LitV LitUnit); ⌜pvs = (LitV LitUnit, v)::pvs'⌝ ∗ proph p pvs' }}}.
Proof.
iIntros (Φ) "Hp HΦ". iApply (wp_resolve with "Hp"); first done.
iApply lifting.wp_pure_step_later=> //=. iApply wp_value.
iIntros "!>" (vs') "HEq Hp". iApply "HΦ". iFrame.
Qed.
Lemma wp_resolve_cmpxchg_suc s E l (p : proph_id) (pvs : list (val * val)) v1 v2 v :
vals_compare_safe v1 v1 →
{{{ proph p pvs ∗ ▷ l ↦ v1 }}}
Resolve (CmpXchg #l v1 v2) #p v @ s; E
{{{ RET (v1, #true) ; ∃ pvs', ⌜pvs = ((v1, #true)%V, v)::pvs'⌝ ∗ proph p pvs' ∗ l ↦ v2 }}}.
Proof.
iIntros (Hcmp Φ) "[Hp Hl] HΦ".
iApply (wp_resolve with "Hp"); first done.
assert (val_is_unboxed v1) as Hv1; first by destruct Hcmp.
iApply (wp_cmpxchg_suc with "Hl"); [done..|]. iIntros "!> Hl".
iIntros (pvs' ->) "Hp". iApply "HΦ". eauto with iFrame.
Qed.
Lemma wp_resolve_cmpxchg_fail s E l (p : proph_id) (pvs : list (val * val)) dq v' v1 v2 v :
v' ≠ v1 → vals_compare_safe v' v1 →
{{{ proph p pvs ∗ ▷ l ↦{dq} v' }}}
Resolve (CmpXchg #l v1 v2) #p v @ s; E
{{{ RET (v', #false) ; ∃ pvs', ⌜pvs = ((v', #false)%V, v)::pvs'⌝ ∗ proph p pvs' ∗ l ↦{dq} v' }}}.
Proof.
iIntros (NEq Hcmp Φ) "[Hp Hl] HΦ".
iApply (wp_resolve with "Hp"); first done.
iApply (wp_cmpxchg_fail with "Hl"); [done..|]. iIntros "!> Hl".
iIntros (pvs' ->) "Hp". iApply "HΦ". eauto with iFrame.
Qed.
End lifting.
Typeclasses Opaque array.