-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproofmode.v
790 lines (749 loc) · 31.9 KB
/
proofmode.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
From iris.proofmode Require Import coq_tactics reduction.
From iris.proofmode Require Export tactics.
From iris.program_logic Require Import atomic.
From iris.heap_lang Require Export tactics derived_laws.
From iris.heap_lang Require Import notation.
From iris.prelude Require Import options.
Import uPred.
Lemma tac_wp_expr_eval `{!heapG Σ} Δ s E Φ e e' :
(∀ (e'':=e'), e = e'') →
envs_entails Δ (WP e' @ s; E {{ Φ }}) → envs_entails Δ (WP e @ s; E {{ Φ }}).
Proof. by intros ->. Qed.
Lemma tac_twp_expr_eval `{!heapG Σ} Δ s E Φ e e' :
(∀ (e'':=e'), e = e'') →
envs_entails Δ (WP e' @ s; E [{ Φ }]) → envs_entails Δ (WP e @ s; E [{ Φ }]).
Proof. by intros ->. Qed.
Tactic Notation "wp_expr_eval" tactic3(t) :=
iStartProof;
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
notypeclasses refine (tac_wp_expr_eval _ _ _ _ e _ _ _);
[let x := fresh in intros x; t; unfold x; notypeclasses refine eq_refl|]
| |- envs_entails _ (twp ?s ?E ?e ?Q) =>
notypeclasses refine (tac_twp_expr_eval _ _ _ _ e _ _ _);
[let x := fresh in intros x; t; unfold x; notypeclasses refine eq_refl|]
| _ => fail "wp_expr_eval: not a 'wp'"
end.
Ltac wp_expr_simpl := wp_expr_eval simpl.
Lemma tac_wp_pure `{!heapG Σ} Δ Δ' s E K e1 e2 φ n Φ :
PureExec φ n e1 e2 →
φ →
MaybeIntoLaterNEnvs n Δ Δ' →
envs_entails Δ' (WP (fill K e2) @ s; E {{ Φ }}) →
envs_entails Δ (WP (fill K e1) @ s; E {{ Φ }}).
Proof.
rewrite envs_entails_eq=> ??? HΔ'. rewrite into_laterN_env_sound /=.
(* We want [pure_exec_fill] to be available to TC search locally. *)
pose proof @pure_exec_fill.
rewrite HΔ' -lifting.wp_pure_step_later //.
Qed.
Lemma tac_twp_pure `{!heapG Σ} Δ s E K e1 e2 φ n Φ :
PureExec φ n e1 e2 →
φ →
envs_entails Δ (WP (fill K e2) @ s; E [{ Φ }]) →
envs_entails Δ (WP (fill K e1) @ s; E [{ Φ }]).
Proof.
rewrite envs_entails_eq=> ?? ->.
(* We want [pure_exec_fill] to be available to TC search locally. *)
pose proof @pure_exec_fill.
rewrite -total_lifting.twp_pure_step //.
Qed.
Lemma tac_wp_value_nofupd `{!heapG Σ} Δ s E Φ v :
envs_entails Δ (Φ v) → envs_entails Δ (WP (Val v) @ s; E {{ Φ }}).
Proof. rewrite envs_entails_eq=> ->. by apply wp_value. Qed.
Lemma tac_twp_value_nofupd `{!heapG Σ} Δ s E Φ v :
envs_entails Δ (Φ v) → envs_entails Δ (WP (Val v) @ s; E [{ Φ }]).
Proof. rewrite envs_entails_eq=> ->. by apply twp_value. Qed.
Lemma tac_wp_value `{!heapG Σ} Δ s E (Φ : val → iPropI Σ) v :
envs_entails Δ (|={E}=> Φ v) → envs_entails Δ (WP (Val v) @ s; E {{ Φ }}).
Proof. rewrite envs_entails_eq=> ->. by rewrite wp_value_fupd. Qed.
Lemma tac_twp_value `{!heapG Σ} Δ s E (Φ : val → iPropI Σ) v :
envs_entails Δ (|={E}=> Φ v) → envs_entails Δ (WP (Val v) @ s; E [{ Φ }]).
Proof. rewrite envs_entails_eq=> ->. by rewrite twp_value_fupd. Qed.
(** Simplify the goal if it is [WP] of a value.
If the postcondition already allows a fupd, do not add a second one.
But otherwise, *do* add a fupd. This ensures that all the lemmas applied
here are bidirectional, so we never will make a goal unprovable. *)
Ltac wp_value_head :=
lazymatch goal with
| |- envs_entails _ (wp ?s ?E (Val _) (λ _, fupd ?E _ _)) =>
eapply tac_wp_value_nofupd
| |- envs_entails _ (wp ?s ?E (Val _) (λ _, wp _ ?E _ _)) =>
eapply tac_wp_value_nofupd
| |- envs_entails _ (wp ?s ?E (Val _) _) =>
eapply tac_wp_value
| |- envs_entails _ (twp ?s ?E (Val _) (λ _, fupd ?E _ _)) =>
eapply tac_twp_value_nofupd
| |- envs_entails _ (twp ?s ?E (Val _) (λ _, twp _ ?E _ _)) =>
eapply tac_twp_value_nofupd
| |- envs_entails _ (twp ?s ?E (Val _) _) =>
eapply tac_twp_value
end.
Ltac wp_finish :=
wp_expr_simpl; (* simplify occurences of subst/fill *)
try wp_value_head; (* in case we have reached a value, get rid of the WP *)
pm_prettify. (* prettify ▷s caused by [MaybeIntoLaterNEnvs] and
λs caused by wp_value *)
Ltac solve_vals_compare_safe :=
(* The first branch is for when we have [vals_compare_safe] in the context.
The other two branches are for when either one of the branches reduces to
[True] or we have it in the context. *)
fast_done || (left; fast_done) || (right; fast_done).
(** The argument [efoc] can be used to specify the construct that should be
reduced. For example, you can write [wp_pure (EIf _ _ _)], which will search
for an [EIf _ _ _] in the expression, and reduce it.
The use of [open_constr] in this tactic is essential. It will convert all holes
(i.e. [_]s) into evars, that later get unified when an occurences is found
(see [unify e' efoc] in the code below). *)
Tactic Notation "wp_pure" open_constr(efoc) :=
iStartProof;
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
let e := eval simpl in e in
reshape_expr e ltac:(fun K e' =>
unify e' efoc;
eapply (tac_wp_pure _ _ _ _ K e');
[iSolveTC (* PureExec *)
|try solve_vals_compare_safe (* The pure condition for PureExec --
handles trivial goals, including [vals_compare_safe] *)
|iSolveTC (* IntoLaters *)
|wp_finish (* new goal *)
])
|| fail "wp_pure: cannot find" efoc "in" e "or" efoc "is not a redex"
| |- envs_entails _ (twp ?s ?E ?e ?Q) =>
let e := eval simpl in e in
reshape_expr e ltac:(fun K e' =>
unify e' efoc;
eapply (tac_twp_pure _ _ _ K e');
[iSolveTC (* PureExec *)
|try solve_vals_compare_safe (* The pure condition for PureExec *)
|wp_finish (* new goal *)
])
|| fail "wp_pure: cannot find" efoc "in" e "or" efoc "is not a redex"
| _ => fail "wp_pure: not a 'wp'"
end.
(* TODO: do this in one go, without [repeat]. *)
Ltac wp_pures :=
iStartProof;
first [ (* The `;[]` makes sure that no side-condition magically spawns. *)
progress repeat (wp_pure _; [])
| wp_finish (* In case wp_pure never ran, make sure we do the usual cleanup. *)
].
(** Unlike [wp_pures], the tactics [wp_rec] and [wp_lam] should also reduce
lambdas/recs that are hidden behind a definition, i.e. they should use
[AsRecV_recv] as a proper instance instead of a [Hint Extern].
We achieve this by putting [AsRecV_recv] in the current environment so that it
can be used as an instance by the typeclass resolution system. We then perform
the reduction, and finally we clear this new hypothesis. *)
Tactic Notation "wp_rec" :=
let H := fresh in
assert (H := AsRecV_recv);
wp_pure (App _ _);
clear H.
Tactic Notation "wp_if" := wp_pure (If _ _ _).
Tactic Notation "wp_if_true" := wp_pure (If (LitV (LitBool true)) _ _).
Tactic Notation "wp_if_false" := wp_pure (If (LitV (LitBool false)) _ _).
Tactic Notation "wp_unop" := wp_pure (UnOp _ _).
Tactic Notation "wp_binop" := wp_pure (BinOp _ _ _).
Tactic Notation "wp_op" := wp_unop || wp_binop.
Tactic Notation "wp_lam" := wp_rec.
Tactic Notation "wp_let" := wp_pure (Rec BAnon (BNamed _) _); wp_lam.
Tactic Notation "wp_seq" := wp_pure (Rec BAnon BAnon _); wp_lam.
Tactic Notation "wp_proj" := wp_pure (Fst _) || wp_pure (Snd _).
Tactic Notation "wp_case" := wp_pure (Case _ _ _).
Tactic Notation "wp_match" := wp_case; wp_pure (Rec _ _ _); wp_lam.
Tactic Notation "wp_inj" := wp_pure (InjL _) || wp_pure (InjR _).
Tactic Notation "wp_pair" := wp_pure (Pair _ _).
Tactic Notation "wp_closure" := wp_pure (Rec _ _ _).
Lemma tac_wp_bind `{!heapG Σ} K Δ s E Φ e f :
f = (λ e, fill K e) → (* as an eta expanded hypothesis so that we can `simpl` it *)
envs_entails Δ (WP e @ s; E {{ v, WP f (Val v) @ s; E {{ Φ }} }})%I →
envs_entails Δ (WP fill K e @ s; E {{ Φ }}).
Proof. rewrite envs_entails_eq=> -> ->. by apply: wp_bind. Qed.
Lemma tac_twp_bind `{!heapG Σ} K Δ s E Φ e f :
f = (λ e, fill K e) → (* as an eta expanded hypothesis so that we can `simpl` it *)
envs_entails Δ (WP e @ s; E [{ v, WP f (Val v) @ s; E [{ Φ }] }])%I →
envs_entails Δ (WP fill K e @ s; E [{ Φ }]).
Proof. rewrite envs_entails_eq=> -> ->. by apply: twp_bind. Qed.
Ltac wp_bind_core K :=
lazymatch eval hnf in K with
| [] => idtac
| _ => eapply (tac_wp_bind K); [simpl; reflexivity|reduction.pm_prettify]
end.
Ltac twp_bind_core K :=
lazymatch eval hnf in K with
| [] => idtac
| _ => eapply (tac_twp_bind K); [simpl; reflexivity|reduction.pm_prettify]
end.
Tactic Notation "wp_bind" open_constr(efoc) :=
iStartProof;
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
first [ reshape_expr e ltac:(fun K e' => unify e' efoc; wp_bind_core K)
| fail 1 "wp_bind: cannot find" efoc "in" e ]
| |- envs_entails _ (twp ?s ?E ?e ?Q) =>
first [ reshape_expr e ltac:(fun K e' => unify e' efoc; twp_bind_core K)
| fail 1 "wp_bind: cannot find" efoc "in" e ]
| _ => fail "wp_bind: not a 'wp'"
end.
(** Heap tactics *)
Section heap.
Context `{!heapG Σ}.
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val → iProp Σ.
Implicit Types Δ : envs (uPredI (iResUR Σ)).
Implicit Types v : val.
Implicit Types z : Z.
Lemma tac_wp_allocN Δ Δ' s E j' j K v n Φ :
(0 < n)%Z →
MaybeIntoLaterNEnvs 1 Δ Δ' →
(∀ l,
match envs_app false (Esnoc (Esnoc Enil j (array l (DfracOwn 1) (replicate (Z.to_nat n) v)))
j' (⌜l ≠ null_loc⌝)) Δ' with
| Some Δ'' =>
envs_entails Δ'' (WP fill K (Val $ LitV $ LitLoc l) @ s; E {{ Φ }})
| None => False
end) →
envs_entails Δ (WP fill K (AllocN (Val $ LitV $ LitInt n) (Val v)) @ s; E {{ Φ }}).
Proof.
rewrite envs_entails_eq=> ? ? HΔ.
rewrite -wp_bind. eapply wand_apply; first exact: wp_allocN.
rewrite left_id into_laterN_env_sound; apply later_mono, forall_intro=> l.
specialize (HΔ l).
destruct (envs_app _ _ _) as [Δ''|] eqn:HΔ'; [ | contradiction ].
rewrite envs_app_sound //; simpl.
apply wand_intro_l.
rewrite bi.sep_assoc (bi.sep_elim_l (⌜l ≠ null_loc⌝ ∗ _)%I).
by rewrite right_id bi.wand_elim_r.
Qed.
Lemma tac_twp_allocN Δ s E j' j K v n Φ :
(0 < n)%Z →
(∀ l,
match envs_app false (Esnoc (Esnoc Enil j (array l (DfracOwn 1) (replicate (Z.to_nat n) v)))
j' (⌜l ≠ null_loc⌝)) Δ with
| Some Δ' =>
envs_entails Δ' (WP fill K (Val $ LitV $ LitLoc l) @ s; E [{ Φ }])
| None => False
end) →
envs_entails Δ (WP fill K (AllocN (Val $ LitV $ LitInt n) (Val v)) @ s; E [{ Φ }]).
Proof.
rewrite envs_entails_eq=> ? HΔ.
rewrite -twp_bind. eapply wand_apply; first exact: twp_allocN.
rewrite left_id. apply forall_intro=> l.
specialize (HΔ l).
destruct (envs_app _ _ _) as [Δ'|] eqn:HΔ'; [ | contradiction ].
rewrite envs_app_sound //; simpl.
apply wand_intro_l. by rewrite (sep_elim_l (l ↦∗ _)%I) right_id wand_elim_r.
Qed.
Lemma tac_wp_alloc Δ Δ' s E j j' K v Φ :
MaybeIntoLaterNEnvs 1 Δ Δ' →
(∀ l,
match envs_app false (Esnoc (Esnoc Enil j ⌜l ≠ null_loc⌝) j' (l ↦ v)) Δ' with
| Some Δ'' =>
envs_entails Δ'' (WP fill K (Val $ LitV l) @ s; E {{ Φ }})
| None => False
end) →
envs_entails Δ (WP fill K (Alloc (Val v)) @ s; E {{ Φ }}).
Proof.
rewrite envs_entails_eq=> ? HΔ.
rewrite -wp_bind. eapply wand_apply; first exact: wp_alloc.
rewrite left_id into_laterN_env_sound; apply later_mono, forall_intro=> l.
specialize (HΔ l).
destruct (envs_app _ _ _) as [Δ''|] eqn:HΔ'; [ | contradiction ].
rewrite envs_app_sound //; simpl.
apply wand_intro_l.
by rewrite sep_assoc (sep_elim_l (l ↦ v ∗ ⌜l ≠ null_loc⌝)%I) right_id wand_elim_r.
Qed.
Lemma tac_twp_alloc Δ s E j j' K v Φ :
(∀ l,
match envs_app false (Esnoc (Esnoc Enil j ⌜l ≠ null_loc⌝) j' (l ↦ v)) Δ with
| Some Δ' =>
envs_entails Δ' (WP fill K (Val $ LitV $ LitLoc l) @ s; E [{ Φ }])
| None => False
end) →
envs_entails Δ (WP fill K (Alloc (Val v)) @ s; E [{ Φ }]).
Proof.
rewrite envs_entails_eq=> HΔ.
rewrite -twp_bind. eapply wand_apply; first exact: twp_alloc.
rewrite left_id. apply forall_intro=> l.
specialize (HΔ l).
destruct (envs_app _ _ _) as [Δ''|] eqn:HΔ'; [ | contradiction ].
rewrite envs_app_sound //; simpl.
apply wand_intro_l.
by rewrite sep_assoc (sep_elim_l (l ↦ v ∗ ⌜l ≠ null_loc⌝)%I) right_id wand_elim_r.
Qed.
Lemma tac_wp_free Δ Δ' s E i K l v Φ :
MaybeIntoLaterNEnvs 1 Δ Δ' →
envs_lookup i Δ' = Some (false, l ↦ v)%I →
(let Δ'' := envs_delete false i false Δ' in
envs_entails Δ'' (WP fill K (Val $ LitV LitUnit) @ s; E {{ Φ }})) →
envs_entails Δ (WP fill K (Free (LitV l)) @ s; E {{ Φ }}).
Proof.
rewrite envs_entails_eq=> ? Hlk Hfin.
rewrite -wp_bind. eapply wand_apply; first exact: wp_free.
rewrite into_laterN_env_sound -later_sep envs_lookup_split //; simpl.
rewrite -Hfin wand_elim_r (envs_lookup_sound' _ _ _ _ _ Hlk).
apply later_mono, sep_mono_r, wand_intro_r. rewrite right_id //.
Qed.
Lemma tac_twp_free Δ s E i K l v Φ :
envs_lookup i Δ = Some (false, l ↦ v)%I →
(let Δ' := envs_delete false i false Δ in
envs_entails Δ' (WP fill K (Val $ LitV LitUnit) @ s; E [{ Φ }])) →
envs_entails Δ (WP fill K (Free (LitV l)) @ s; E [{ Φ }]).
Proof.
rewrite envs_entails_eq=> Hlk Hfin.
rewrite -twp_bind. eapply wand_apply; first exact: twp_free.
rewrite envs_lookup_split //; simpl.
rewrite -Hfin wand_elim_r (envs_lookup_sound' _ _ _ _ _ Hlk).
apply sep_mono_r, wand_intro_r. rewrite right_id //.
Qed.
Lemma tac_wp_load Δ Δ' s E i K b l q v Φ :
MaybeIntoLaterNEnvs 1 Δ Δ' →
envs_lookup i Δ' = Some (b, l ↦{q} v)%I →
envs_entails Δ' (WP fill K (Val v) @ s; E {{ Φ }}) →
envs_entails Δ (WP fill K (Load (LitV l)) @ s; E {{ Φ }}).
Proof.
rewrite envs_entails_eq=> ?? Hi.
rewrite -wp_bind. eapply wand_apply; first exact: wp_load.
rewrite into_laterN_env_sound -later_sep envs_lookup_split //; simpl.
apply later_mono.
destruct b; simpl.
* iIntros "[#$ He]". iIntros "_". iApply Hi. iApply "He". iFrame "#".
* by apply sep_mono_r, wand_mono.
Qed.
Lemma tac_twp_load Δ s E i K b l q v Φ :
envs_lookup i Δ = Some (b, l ↦{q} v)%I →
envs_entails Δ (WP fill K (Val v) @ s; E [{ Φ }]) →
envs_entails Δ (WP fill K (Load (LitV l)) @ s; E [{ Φ }]).
Proof.
rewrite envs_entails_eq=> ? Hi.
rewrite -twp_bind. eapply wand_apply; first exact: twp_load.
rewrite envs_lookup_split //; simpl.
destruct b; simpl.
- iIntros "[#$ He]". iIntros "_". iApply Hi. iApply "He". iFrame "#".
- iIntros "[$ He]". iIntros "Hl". iApply Hi. iApply "He". iFrame "Hl".
Qed.
Lemma tac_wp_store Δ Δ' s E i K l v v' Φ :
MaybeIntoLaterNEnvs 1 Δ Δ' →
envs_lookup i Δ' = Some (false, l ↦ v)%I →
match envs_simple_replace i false (Esnoc Enil i (l ↦ v')) Δ' with
| Some Δ'' => envs_entails Δ'' (WP fill K (Val $ LitV LitUnit) @ s; E {{ Φ }})
| None => False
end →
envs_entails Δ (WP fill K (Store (LitV l) (Val v')) @ s; E {{ Φ }}).
Proof.
rewrite envs_entails_eq=> ???.
destruct (envs_simple_replace _ _ _) as [Δ''|] eqn:HΔ''; [ | contradiction ].
rewrite -wp_bind. eapply wand_apply; first by eapply wp_store.
rewrite into_laterN_env_sound -later_sep envs_simple_replace_sound //; simpl.
rewrite right_id. by apply later_mono, sep_mono_r, wand_mono.
Qed.
Lemma tac_twp_store Δ s E i K l v v' Φ :
envs_lookup i Δ = Some (false, l ↦ v)%I →
match envs_simple_replace i false (Esnoc Enil i (l ↦ v')) Δ with
| Some Δ' => envs_entails Δ' (WP fill K (Val $ LitV LitUnit) @ s; E [{ Φ }])
| None => False
end →
envs_entails Δ (WP fill K (Store (LitV l) v') @ s; E [{ Φ }]).
Proof.
rewrite envs_entails_eq. intros.
destruct (envs_simple_replace _ _ _) as [Δ''|] eqn:HΔ''; [ | contradiction ].
rewrite -twp_bind. eapply wand_apply; first by eapply twp_store.
rewrite envs_simple_replace_sound //; simpl.
rewrite right_id. by apply sep_mono_r, wand_mono.
Qed.
Lemma tac_wp_cmpxchg Δ Δ' s E i K l v v1 v2 Φ :
MaybeIntoLaterNEnvs 1 Δ Δ' →
envs_lookup i Δ' = Some (false, l ↦ v)%I →
vals_compare_safe v v1 →
match envs_simple_replace i false (Esnoc Enil i (l ↦ v2)) Δ' with
| Some Δ'' =>
v = v1 →
envs_entails Δ'' (WP fill K (Val $ PairV v (LitV $ LitBool true)) @ s; E {{ Φ }})
| None => False
end →
(v ≠ v1 →
envs_entails Δ' (WP fill K (Val $ PairV v (LitV $ LitBool false)) @ s; E {{ Φ }})) →
envs_entails Δ (WP fill K (CmpXchg (LitV l) (Val v1) (Val v2)) @ s; E {{ Φ }}).
Proof.
rewrite envs_entails_eq=> ??? Hsuc Hfail.
destruct (envs_simple_replace _ _ _ _) as [Δ''|] eqn:HΔ''; [ | contradiction ].
destruct (decide (v = v1)) as [Heq|Hne].
- rewrite -wp_bind. eapply wand_apply.
{ eapply wp_cmpxchg_suc; eauto. }
rewrite into_laterN_env_sound -later_sep /= {1}envs_simple_replace_sound //; simpl.
apply later_mono, sep_mono_r. rewrite right_id. apply wand_mono; auto.
- rewrite -wp_bind. eapply wand_apply.
{ eapply wp_cmpxchg_fail; eauto. }
rewrite into_laterN_env_sound -later_sep /= {1}envs_lookup_split //; simpl.
apply later_mono, sep_mono_r. apply wand_mono; auto.
Qed.
Lemma tac_twp_cmpxchg Δ s E i K l v v1 v2 Φ :
envs_lookup i Δ = Some (false, l ↦ v)%I →
vals_compare_safe v v1 →
match envs_simple_replace i false (Esnoc Enil i (l ↦ v2)) Δ with
| Some Δ' =>
v = v1 →
envs_entails Δ' (WP fill K (Val $ PairV v (LitV $ LitBool true)) @ s; E [{ Φ }])
| None => False
end →
(v ≠ v1 →
envs_entails Δ (WP fill K (Val $ PairV v (LitV $ LitBool false)) @ s; E [{ Φ }])) →
envs_entails Δ (WP fill K (CmpXchg (LitV l) v1 v2) @ s; E [{ Φ }]).
Proof.
rewrite envs_entails_eq=> ?? Hsuc Hfail.
destruct (envs_simple_replace _ _ _ _) as [Δ''|] eqn:HΔ''; [ | contradiction ].
destruct (decide (v = v1)) as [Heq|Hne].
- rewrite -twp_bind. eapply wand_apply.
{ eapply twp_cmpxchg_suc; eauto. }
rewrite /= {1}envs_simple_replace_sound //; simpl.
apply sep_mono_r. rewrite right_id. apply wand_mono; auto.
- rewrite -twp_bind. eapply wand_apply.
{ eapply twp_cmpxchg_fail; eauto. }
rewrite /= {1}envs_lookup_split //; simpl.
apply sep_mono_r. apply wand_mono; auto.
Qed.
Lemma tac_wp_cmpxchg_fail Δ Δ' s E i K l q v v1 v2 Φ :
MaybeIntoLaterNEnvs 1 Δ Δ' →
envs_lookup i Δ' = Some (false, l ↦{q} v)%I →
v ≠ v1 → vals_compare_safe v v1 →
envs_entails Δ' (WP fill K (Val $ PairV v (LitV $ LitBool false)) @ s; E {{ Φ }}) →
envs_entails Δ (WP fill K (CmpXchg (LitV l) v1 v2) @ s; E {{ Φ }}).
Proof.
rewrite envs_entails_eq=> ?????.
rewrite -wp_bind. eapply wand_apply; first exact: wp_cmpxchg_fail.
rewrite into_laterN_env_sound -later_sep envs_lookup_split //; simpl.
by apply later_mono, sep_mono_r, wand_mono.
Qed.
Lemma tac_twp_cmpxchg_fail Δ s E i K l q v v1 v2 Φ :
envs_lookup i Δ = Some (false, l ↦{q} v)%I →
v ≠ v1 → vals_compare_safe v v1 →
envs_entails Δ (WP fill K (Val $ PairV v (LitV $ LitBool false)) @ s; E [{ Φ }]) →
envs_entails Δ (WP fill K (CmpXchg (LitV l) v1 v2) @ s; E [{ Φ }]).
Proof.
rewrite envs_entails_eq. intros. rewrite -twp_bind.
eapply wand_apply; first exact: twp_cmpxchg_fail.
rewrite envs_lookup_split //=. by do 2 f_equiv.
Qed.
Lemma tac_wp_cmpxchg_suc Δ Δ' s E i K l v v1 v2 Φ :
MaybeIntoLaterNEnvs 1 Δ Δ' →
envs_lookup i Δ' = Some (false, l ↦ v)%I →
v = v1 → vals_compare_safe v v1 →
match envs_simple_replace i false (Esnoc Enil i (l ↦ v2)) Δ' with
| Some Δ'' =>
envs_entails Δ'' (WP fill K (Val $ PairV v (LitV $ LitBool true)) @ s; E {{ Φ }})
| None => False
end →
envs_entails Δ (WP fill K (CmpXchg (LitV l) v1 v2) @ s; E {{ Φ }}).
Proof.
rewrite envs_entails_eq=> ?????; subst.
destruct (envs_simple_replace _ _ _) as [Δ''|] eqn:HΔ''; [ | contradiction ].
rewrite -wp_bind. eapply wand_apply.
{ eapply wp_cmpxchg_suc; eauto. }
rewrite into_laterN_env_sound -later_sep envs_simple_replace_sound //; simpl.
rewrite right_id. by apply later_mono, sep_mono_r, wand_mono.
Qed.
Lemma tac_twp_cmpxchg_suc Δ s E i K l v v1 v2 Φ :
envs_lookup i Δ = Some (false, l ↦ v)%I →
v = v1 → vals_compare_safe v v1 →
match envs_simple_replace i false (Esnoc Enil i (l ↦ v2)) Δ with
| Some Δ' =>
envs_entails Δ' (WP fill K (Val $ PairV v (LitV $ LitBool true)) @ s; E [{ Φ }])
| None => False
end →
envs_entails Δ (WP fill K (CmpXchg (LitV l) v1 v2) @ s; E [{ Φ }]).
Proof.
rewrite envs_entails_eq=>????; subst.
destruct (envs_simple_replace _ _ _) as [Δ''|] eqn:HΔ''; [ | contradiction ].
rewrite -twp_bind. eapply wand_apply.
{ eapply twp_cmpxchg_suc; eauto. }
rewrite envs_simple_replace_sound //; simpl.
rewrite right_id. by apply sep_mono_r, wand_mono.
Qed.
Lemma tac_wp_faa Δ Δ' s E i K l z1 z2 Φ :
MaybeIntoLaterNEnvs 1 Δ Δ' →
envs_lookup i Δ' = Some (false, l ↦ LitV z1)%I →
match envs_simple_replace i false (Esnoc Enil i (l ↦ LitV (LitInt (z1 + z2)))) Δ' with
| Some Δ'' => envs_entails Δ'' (WP fill K (Val $ LitV z1) @ s; E {{ Φ }})
| None => False
end →
envs_entails Δ (WP fill K (FAA (LitV l) (LitV z2)) @ s; E {{ Φ }}).
Proof.
rewrite envs_entails_eq=> ???.
destruct (envs_simple_replace _ _ _) as [Δ''|] eqn:HΔ''; [ | contradiction ].
rewrite -wp_bind. eapply wand_apply; first exact: (wp_faa _ _ _ z1 z2).
rewrite into_laterN_env_sound -later_sep envs_simple_replace_sound //; simpl.
rewrite right_id. by apply later_mono, sep_mono_r, wand_mono.
Qed.
Lemma tac_twp_faa Δ s E i K l z1 z2 Φ :
envs_lookup i Δ = Some (false, l ↦ LitV z1)%I →
match envs_simple_replace i false (Esnoc Enil i (l ↦ LitV (LitInt (z1 + z2)))) Δ with
| Some Δ' => envs_entails Δ' (WP fill K (Val $ LitV z1) @ s; E [{ Φ }])
| None => False
end →
envs_entails Δ (WP fill K (FAA (LitV l) (LitV z2)) @ s; E [{ Φ }]).
Proof.
rewrite envs_entails_eq=> ??.
destruct (envs_simple_replace _ _ _) as [Δ'|] eqn:HΔ'; [ | contradiction ].
rewrite -twp_bind. eapply wand_apply; first exact: (twp_faa _ _ _ z1 z2).
rewrite envs_simple_replace_sound //; simpl.
rewrite right_id. by apply sep_mono_r, wand_mono.
Qed.
End heap.
(** The tactic [wp_apply_core lem tac_suc tac_fail] evaluates [lem] to a
hypothesis [H] that can be applied, and then runs [wp_bind_core K; tac_suc H]
for every possible evaluation context [K].
- The tactic [tac_suc] should do [iApplyHyp H] to actually apply the hypothesis,
but can perform other operations in addition (see [wp_apply] and [awp_apply]
below).
- The tactic [tac_fail cont] is called when [tac_suc H] fails for all evaluation
contexts [K], and can perform further operations before invoking [cont] to
try again.
TC resolution of [lem] premises happens *after* [tac_suc H] got executed. *)
Ltac wp_apply_core lem tac_suc tac_fail := first
[iPoseProofCore lem as false (fun H =>
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
reshape_expr e ltac:(fun K e' =>
wp_bind_core K; tac_suc H)
| |- envs_entails _ (twp ?s ?E ?e ?Q) =>
reshape_expr e ltac:(fun K e' =>
twp_bind_core K; tac_suc H)
| _ => fail 1 "wp_apply: not a 'wp'"
end)
|tac_fail ltac:(fun _ => wp_apply_core lem tac_suc tac_fail)
|let P := type of lem in
fail "wp_apply: cannot apply" lem ":" P ].
Tactic Notation "wp_apply" open_constr(lem) :=
wp_apply_core lem ltac:(fun H => iApplyHyp H; try iNext; try wp_expr_simpl)
ltac:(fun cont => fail).
Tactic Notation "wp_smart_apply" open_constr(lem) :=
wp_apply_core lem ltac:(fun H => iApplyHyp H; try iNext; try wp_expr_simpl)
ltac:(fun cont => wp_pure _; []; cont ()).
(** Tactic tailored for atomic triples: the first, simple one just runs
[iAuIntro] on the goal, as atomic triples always have an atomic update as their
premise. The second one additionaly does some framing: it gets rid of [Hs] from
the context, which is intended to be the non-laterable assertions that iAuIntro
would choke on. You get them all back in the continuation of the atomic
operation. *)
Tactic Notation "awp_apply" open_constr(lem) :=
wp_apply_core lem ltac:(fun H => iApplyHyp H) ltac:(fun cont => fail);
last iAuIntro.
Tactic Notation "awp_apply" open_constr(lem) "without" constr(Hs) :=
wp_apply_core lem
ltac:(fun H =>
iApply wp_frame_wand_l; iSplitL Hs; [iAccu|iApplyHyp H])
ltac:(fun cont => fail);
last iAuIntro.
Tactic Notation "wp_alloc" ident(l) "as" constr(H) :=
let Htmp := iFresh in
let Htmp' := iFresh in
let finish _ :=
first [intros l | fail 1 "wp_alloc:" l "not fresh"];
pm_reduce;
lazymatch goal with
| |- False => fail 1 "wp_alloc:" H "not fresh"
| _ => iDestructHyp Htmp as H; wp_finish
end in
wp_pures;
(** The code first tries to use allocation lemma for a single reference,
ie, [tac_wp_alloc] (respectively, [tac_twp_alloc]).
If that fails, it tries to use the lemma [tac_wp_allocN]
(respectively, [tac_twp_allocN]) for allocating an array.
Notice that we could have used the array allocation lemma also for single
references. However, that would produce the resource l ↦∗ [v] instead of
l ↦ v for single references. These are logically equivalent assertions
but are not equal. *)
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
let process_single _ :=
first
[reshape_expr e ltac:(fun K e' => eapply (tac_wp_alloc _ _ _ _ Htmp' Htmp K))
|fail 1 "wp_alloc: cannot find 'Alloc' in" e];
[iSolveTC
|finish ()]
in
let process_array _ :=
first
[reshape_expr e ltac:(fun K e' => eapply (tac_wp_allocN _ _ _ _ Htmp' Htmp K))
|fail 1 "wp_alloc: cannot find 'Alloc' in" e];
[idtac|iSolveTC
|finish ()]
in (process_single ()) || (process_array ())
| |- envs_entails _ (twp ?s ?E ?e ?Q) =>
let process_single _ :=
first
[reshape_expr e ltac:(fun K e' => eapply (tac_twp_alloc _ _ _ Htmp' Htmp K))
|fail 1 "wp_alloc: cannot find 'Alloc' in" e];
finish ()
in
let process_array _ :=
first
[reshape_expr e ltac:(fun K e' => eapply (tac_twp_allocN _ _ _ Htmp' Htmp K))
|fail 1 "wp_alloc: cannot find 'Alloc' in" e];
[idtac
|finish ()]
in (process_single ()) || (process_array ())
| _ => fail "wp_alloc: not a 'wp'"
end.
Tactic Notation "wp_alloc" ident(l) :=
wp_alloc l as "?".
Tactic Notation "wp_free" :=
let solve_mapsto _ :=
let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in
iAssumptionCore || fail "wp_free: cannot find" l "↦ ?" in
wp_pures;
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_wp_free _ _ _ _ _ K))
|fail 1 "wp_free: cannot find 'Free' in" e];
[iSolveTC
|solve_mapsto ()
|pm_reduce; wp_finish]
| |- envs_entails _ (twp ?s ?E ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_twp_free _ _ _ _ K))
|fail 1 "wp_free: cannot find 'Free' in" e];
[solve_mapsto ()
|pm_reduce; wp_finish]
| _ => fail "wp_free: not a 'wp'"
end.
Tactic Notation "wp_load" :=
let solve_mapsto _ :=
let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in
iAssumptionCore || fail "wp_load: cannot find" l "↦ ?" in
wp_pures;
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_wp_load _ _ _ _ _ K))
|fail 1 "wp_load: cannot find 'Load' in" e];
[iSolveTC
|solve_mapsto ()
|wp_finish]
| |- envs_entails _ (twp ?s ?E ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_twp_load _ _ _ _ K))
|fail 1 "wp_load: cannot find 'Load' in" e];
[solve_mapsto ()
|wp_finish]
| _ => fail "wp_load: not a 'wp'"
end.
Tactic Notation "wp_store" :=
let solve_mapsto _ :=
let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in
iAssumptionCore || fail "wp_store: cannot find" l "↦ ?" in
wp_pures;
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_wp_store _ _ _ _ _ K))
|fail 1 "wp_store: cannot find 'Store' in" e];
[iSolveTC
|solve_mapsto ()
|pm_reduce; first [wp_seq|wp_finish]]
| |- envs_entails _ (twp ?s ?E ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_twp_store _ _ _ _ K))
|fail 1 "wp_store: cannot find 'Store' in" e];
[solve_mapsto ()
|pm_reduce; first [wp_seq|wp_finish]]
| _ => fail "wp_store: not a 'wp'"
end.
Tactic Notation "wp_cmpxchg" "as" simple_intropattern(H1) "|" simple_intropattern(H2) :=
let solve_mapsto _ :=
let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in
iAssumptionCore || fail "wp_cmpxchg: cannot find" l "↦ ?" in
wp_pures;
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_wp_cmpxchg _ _ _ _ _ K))
|fail 1 "wp_cmpxchg: cannot find 'CmpXchg' in" e];
[iSolveTC
|solve_mapsto ()
|try solve_vals_compare_safe
|pm_reduce; intros H1; wp_finish
|intros H2; wp_finish]
| |- envs_entails _ (twp ?E ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_twp_cmpxchg _ _ _ _ K))
|fail 1 "wp_cmpxchg: cannot find 'CmpXchg' in" e];
[solve_mapsto ()
|try solve_vals_compare_safe
|pm_reduce; intros H1; wp_finish
|intros H2; wp_finish]
| _ => fail "wp_cmpxchg: not a 'wp'"
end.
Tactic Notation "wp_cmpxchg_fail" :=
let solve_mapsto _ :=
let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in
iAssumptionCore || fail "wp_cmpxchg_fail: cannot find" l "↦ ?" in
wp_pures;
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_wp_cmpxchg_fail _ _ _ _ _ K))
|fail 1 "wp_cmpxchg_fail: cannot find 'CmpXchg' in" e];
[iSolveTC
|solve_mapsto ()
|try (simpl; congruence) (* value inequality *)
|try solve_vals_compare_safe
|wp_finish]
| |- envs_entails _ (twp ?s ?E ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_twp_cmpxchg_fail _ _ _ _ K))
|fail 1 "wp_cmpxchg_fail: cannot find 'CmpXchg' in" e];
[solve_mapsto ()
|try (simpl; congruence) (* value inequality *)
|try solve_vals_compare_safe
|wp_finish]
| _ => fail "wp_cmpxchg_fail: not a 'wp'"
end.
Tactic Notation "wp_cmpxchg_suc" :=
let solve_mapsto _ :=
let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in
iAssumptionCore || fail "wp_cmpxchg_suc: cannot find" l "↦ ?" in
wp_pures;
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_wp_cmpxchg_suc _ _ _ _ _ K))
|fail 1 "wp_cmpxchg_suc: cannot find 'CmpXchg' in" e];
[iSolveTC
|solve_mapsto ()
|try (simpl; congruence) (* value equality *)
|try solve_vals_compare_safe
|pm_reduce; wp_finish]
| |- envs_entails _ (twp ?s ?E ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_twp_cmpxchg_suc _ _ _ _ K))
|fail 1 "wp_cmpxchg_suc: cannot find 'CmpXchg' in" e];
[solve_mapsto ()
|try (simpl; congruence) (* value equality *)
|try solve_vals_compare_safe
|pm_reduce; wp_finish]
| _ => fail "wp_cmpxchg_suc: not a 'wp'"
end.
Tactic Notation "wp_faa" :=
let solve_mapsto _ :=
let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in
iAssumptionCore || fail "wp_faa: cannot find" l "↦ ?" in
wp_pures;
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_wp_faa _ _ _ _ _ K))
|fail 1 "wp_faa: cannot find 'FAA' in" e];
[iSolveTC
|solve_mapsto ()
|pm_reduce; wp_finish]
| |- envs_entails _ (twp ?s ?E ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_twp_faa _ _ _ _ K))
|fail 1 "wp_faa: cannot find 'FAA' in" e];
[solve_mapsto ()
|pm_reduce; wp_finish]
| _ => fail "wp_faa: not a 'wp'"
end.