-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathpredict.py
40 lines (30 loc) · 1.16 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import pandas as pd
import joblib
from tensorflow.keras.models import load_model
import numpy as np
def predict(arguments):
try:
data = pd.DataFrame(arguments, index=[0])
for col_name in data:
data[col_name] = pd.to_numeric(data[col_name], errors="ignore")
inverse_columns = [col_name for col_name in data if "inv_" in col_name]
def invert(value):
if type(value) is str:
return 0
else:
return 1 / 1 if value == 0 else 1 / value
for col_name in inverse_columns:
data[col_name] = data[col_name].map(invert)
for joint_col, indiv_col in zip(
["annual_inc_joint", "dti_joint"], ["annual_inc", "dti"]
):
data[joint_col] = [
indiv_val if type(joint_val) is str else joint_val
for joint_val, indiv_val in zip(data[joint_col], data[indiv_col])
]
transformer = joblib.load("./models/data_transformer.joblib")
X = transformer.transform(data)
model = load_model("./models/loan_risk_model")
return model(X).numpy()[0][0]
except:
return np.nan