-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
110 lines (91 loc) · 3.08 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
__author__ = 'Jihyun Park'
__email__ = '[email protected]'
import numpy as np
import csv
def get_lab_arr(lablist, n_labels=None):
"""
Convert a list of labels (1-d array with size (N,))
to a matrix (2-d array with size (N, L)), where
N = number of data points
L = number of labels
Parameters
----------
lablist : list or np.array
List of labels.
n_labels : int
Number of labels that exist in lablist.
Returns
-------
np.array
One-hot-encoded 2-d array, where the column has the size of n_labels.
"""
if not n_labels:
maxlab = max(lablist)
n_labels = maxlab + 1
labarr = np.zeros((len(lablist), n_labels))
labarr[range(len(lablist)), lablist] = 1
return labarr
def flatten_nested_labels(nested_labs, lab_idx=None):
"""
Convert a session-level nested list into an utterance-level flattened list.
"""
if lab_idx is None:
return [nested_labs[i][j] for i in range(len(nested_labs)) for j in range(len(nested_labs[i]))]
else:
return [nested_labs[i][lab_idx][j] for i in range(len(nested_labs)) for j in range(len(nested_labs[i][lab_idx]))]
def get_nested_labels(flattened_labs, len_list):
"""
Given an utterance-level flattened list of labels, and the lengths (in utterance) of each sessions,
get a session-level nested list of labels.
Parameters
----------
flattened_labs : list[int] or np.array[int]
1-d list or np.array with size (N, )
len_list : list[int]
1-d list or np.array with size (S, )
Returns
-------
list[list[int]]
with size (S, N_s)
* N: total number of utterances
* S: number of sessions
* N_s : number of utterances in each session
"""
fr, to = 0, 0
nested_labs = []
for slen in len_list:
to = fr + slen
nested_labs.append(flattened_labs[fr:to])
fr = to
return nested_labs
def save_sq_mat_with_labels(mat, lid2shortname, filename):
"""
Save square matrix with labels.
Parameters
----------
mat : np.array
with size (n_labels, n_labels)
lid2shortname : dict[int, str]
Short names for each lab index. Used as headers of each columns and rows.
filename : str
Path to the file where the matrix is saved as csv file.
"""
with open(filename, 'w') as f:
writer = csv.writer(f)
writer.writerow([""] + lid2shortname)
writer.writerows([[lid2shortname[i]]+row for i, row in enumerate(mat.tolist())])
def get_marginals(doc_label_mat):
"""
Get marginal probabilities given a one-hot-encoded (n_docs X n_label) 2-d array.
"""
n_docs_in_labels = np.sum(doc_label_mat, axis=0)
totalsum = np.sum(n_docs_in_labels)
weights = n_docs_in_labels / float(totalsum)
return weights
def get_marginals_from_y_seq(tr_true_y, n_labels):
"""
Get marginal probabilities given a sequence of label integers.
List of label indices (tr_true_y) should range [0, n_labels).
"""
doc_lab_mat = get_lab_arr(tr_true_y, n_labels)
return get_marginals(doc_lab_mat)