forked from nianticlabs/stereo-from-mono
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_manager.py
executable file
·107 lines (84 loc) · 3.99 KB
/
model_manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# Copyright Niantic 2020. Patent Pending. All rights reserved.
#
# This software is licensed under the terms of the Stereo-from-mono licence
# which allows for non-commercial use only, the full terms of which are made
# available in the LICENSE file.
import os
from collections import defaultdict
import json
import time
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, ConcatDataset
from tensorboardX import SummaryWriter
import networks
class ModelManager:
def __init__(self, opt):
self.network = opt.network
self.max_disparity = opt.max_disparity
self.learning_rate = opt.lr
self.lr_step_size = opt.lr_step_size
self.save_folder = os.path.join(opt.log_path, opt.model_name, 'models')
os.makedirs(self.save_folder, exist_ok=True)
self.use_cuda = torch.cuda.is_available()
# build network
if self.network != 'hourglass':
raise NotImplementedError('Currently only hourglass network implemented!')
self.model = networks.hourglass(self.max_disparity,
psm_no_SPP=opt.psm_no_SPP,
big_SPP=opt.big_SPP)
self.scales = self.model.scales
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
self.model = nn.DataParallel(self.model)
self.model.cuda()
elif self.use_cuda:
self.model.cuda()
else:
print('Not using GPU - is this really what you want?')
if opt.mode == 'train':
self.optimiser = torch.optim.Adam(self.model.parameters(),
lr=self.learning_rate)
self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimiser,
step_size=self.lr_step_size)
self.save_opts(opt)
print('learning rate {}'.format(self.learning_rate))
for group in self.optimiser.param_groups:
print('learning rate {}'.format(group['lr']))
print('learning rate {}'.format(self.scheduler.get_lr()[0]))
def load_model(self, weights_path, load_optimiser=False):
print('loading model weights from {}...'.format(weights_path))
weights = torch.load(os.path.join(weights_path, 'model.pth'))
if torch.cuda.is_available():
try:
self.model.load_state_dict(weights)
except RuntimeError:
new_weights = {}
for key, val in weights.items():
new_key = key[7:] # remove 'module.' from the start (from multi gpu -> single)
new_weights[new_key] = val
weights = new_weights
self.model.load_state_dict(weights)
else:
self.model.load_state_dict(weights, map_location='cpu')
print('successfully loaded weights!')
if load_optimiser:
print('loading optimiser...')
weights = torch.load(os.path.join(weights_path, 'optimiser.pth'))
self.optimiser.load_state_dict(weights)
print('successfully loaded optimiser!')
for group in self.optimiser.param_groups:
print('learning rate {}'.format(group['lr']))
def save_model(self, folder_name):
save_path = os.path.join(self.save_folder, folder_name)
print('saving weights to {}...'.format(save_path))
os.makedirs(save_path, exist_ok=True)
torch.save(self.model.state_dict(), os.path.join(save_path,
'model.pth'))
torch.save(self.optimiser.state_dict(), os.path.join(save_path,
'optimiser.pth'))
print('success!')
def save_opts(self, opt):
options = opt.__dict__.copy()
with open(os.path.join(self.save_folder, 'opts.json'), 'w') as fh:
json.dump(options, fh, indent=2)