-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_sb3.py
executable file
·140 lines (119 loc) · 3.66 KB
/
train_sb3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/env python
import argparse
import random
from pathlib import Path
import gymnasium as gym
import gym_PBN
import numpy as np
import torch
import wandb
from gym_PBN.utils.eval import compute_ssd_hist
# from sb3_contrib import TRPO
from stable_baselines3 import DQN, PPO, SAC
from wandb.integration.sb3 import WandbCallback
model_cls = PPO
model_name = "PPO"
# Parse settings
parser = argparse.ArgumentParser(description="Train an RL model for target control.")
parser.add_argument(
"--time-steps", metavar="N", type=int, help="Total number of training time steps."
)
parser.add_argument(
"--seed", type=int, default=42, metavar="S", help="random seed (default: 42)."
)
parser.add_argument("--env", type=str, help="the environment name to run.")
parser.add_argument(
"--resume-training",
action="store_true",
default=True,
help="resume training from latest checkpoint.",
)
parser.add_argument("--checkpoint-dir", default="models", help="path to save models")
parser.add_argument(
"--no-cuda", action="store_true", default=False, help="disables CUDA training"
)
parser.add_argument(
"--eval-only", action="store_true", default=False, help="evaluate only"
)
parser.add_argument(
"--exp-name", type=str, default="sb3", metavar="E", help="the experiment name."
)
parser.add_argument(
"--log-dir", type=str, default="logs", metavar="l", help="the logging directory."
)
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
DEVICE = torch.device("cuda" if use_cuda else "cpu")
print(f"Training on {DEVICE}")
# Reproducibility
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
# Load env
env = gym.make(args.env)
# set up logs
TOP_LEVEL_LOG_DIR = Path(args.log_dir)
TOP_LEVEL_LOG_DIR.mkdir(parents=True, exist_ok=True)
RUN_NAME = f"{args.env.split('/')[-1]}_{args.exp_name}_{args.seed}"
# Checkpoints
Path(args.checkpoint_dir).mkdir(parents=True, exist_ok=True)
def get_latest_checkpoint():
model_checkpoints = Path(args.checkpoint_dir) / RUN_NAME
files = list(model_checkpoints.glob("*.zip"))
if len(files) > 0:
return max(files, key=lambda x: x.stat().st_ctime)
else:
return None
# Model
time_steps = args.time_steps
total_time_steps = args.time_steps
model = model_cls(
"MlpPolicy",
env,
device=DEVICE,
tensorboard_log=TOP_LEVEL_LOG_DIR / RUN_NAME,
verbose=1,
)
if args.resume_training:
model_path = get_latest_checkpoint()
if model_path:
model = model_cls.load(model_path, env, device=DEVICE, verbose=1)
total_time_steps = args.time_steps
time_steps = total_time_steps - model.num_timesteps
config = {
"train_steps": total_time_steps,
"model": model_name,
"batch_size": model.batch_size,
"learning_rate": model.learning_rate,
"policy": model.policy_class,
"policy_kwargs": model.policy_kwargs,
"gamma": model.gamma,
"max_grad_norm": model.max_grad_norm,
}
run = wandb.init(
project="pbn-rl",
entity="uos-plccn",
sync_tensorboard=True,
monitor_gym=True,
config=config,
name=RUN_NAME,
save_code=True,
)
# Train
if not args.eval_only:
print(f"Training for {time_steps} time steps...")
model.learn(
time_steps,
tb_log_name=f"run_{time_steps}",
callback=WandbCallback(
model_save_path=Path(args.checkpoint_dir) / RUN_NAME,
model_save_freq=10_000,
gradient_save_freq=100,
verbose=2,
),
reset_num_timesteps=not args.resume_training,
)
print(f"Evaluating...")
ssd, plot = compute_ssd_hist(env, model, resets=300, iters=100_000, multiprocess=False)
run.log({"SSD": plot})
run.finish()