-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
67 lines (54 loc) · 2.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from pathlib import Path
import numpy as np
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.results_plotter import load_results, ts2xy
import json
class SaveOnBestTrainingRewardCallback(BaseCallback):
"""
Callback for saving a model (the check is done every ``check_freq`` steps)
based on the training reward (in practice, we recommend using ``EvalCallback``).
:param check_freq: (int)
:param log_dir: (str) Path to the folder where the model will be saved.
It must contains the file created by the ``Monitor`` wrapper.
:param verbose: (int)
"""
def __init__(self, check_freq: int, log_dir: str, save_dir: str, verbose=1):
super(SaveOnBestTrainingRewardCallback, self).__init__(verbose)
self.check_freq = check_freq
self.log_dir = log_dir
self.best_save_path = Path(save_dir) / "best_model"
self.all_save_path = Path(save_dir) / "current_model"
self.save_dir = Path(save_dir)
self.best_mean_reward = -np.inf
def _init_callback(self) -> None:
# Create folder if needed
if self.best_save_path is not None:
self.best_save_path.parent.mkdir(parents=True, exist_ok=True)
if self.all_save_path is not None:
self.all_save_path.parent.mkdir(parents=True, exist_ok=True)
def _on_step(self) -> bool:
if self.n_calls % self.check_freq == 0:
# Retrieve training reward
x, y = ts2xy(load_results(self.log_dir), "timesteps")
if len(x) > 0:
# Mean training reward over the last 100 episodes
mean_reward = np.mean(y[-100:])
if self.verbose > 0:
print(f"Num timesteps: {self.num_timesteps}")
print(
f"Best mean reward: {self.best_mean_reward:.2f} - Last mean reward per episode: {mean_reward:.2f}"
)
# New best model, you could save the agent here
if mean_reward > self.best_mean_reward:
self.best_mean_reward = mean_reward
# Example for saving best model
if self.verbose > 0:
print(f"Saving new best model to {self.best_save_path}")
self.model.save(self.best_save_path)
# Save it anyway
self.model.save(self.all_save_path)
# Metadata
metadata = {"step": self.n_calls}
with open(self.save_dir / "metadata.json") as f:
json.dump(metadata, f)
return True