-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathligo.py
633 lines (501 loc) · 28.3 KB
/
ligo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
import argparse
import glob
import json
import logging
import os
import pickle
import random
import math
import re
import shutil
import sys
from typing import Dict, List, Tuple
from datetime import datetime
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence
import torch.multiprocessing as mp
from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from transformers import (
AutoConfig,
PreTrainedModel,
PreTrainedTokenizer,
BertConfig,
BertForMaskedLM,
BertTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
sys.path.append(
os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
)
from model import SimpleBertForMaskedLM, SimpleRobertaForMaskedLM
def is_bert(model):
return isinstance(model, SimpleBertForMaskedLM)
def is_roberta(model):
return isinstance(model, SimpleRobertaForMaskedLM)
def num_layer_of(model):
if is_bert(model):
return len(model.bert.encoder.layer)
elif is_roberta(model):
return len(model.roberta.encoder.layer)
else:
raise NotImplementedError
def is_encoder_layer(name):
return name.startswith('bert.encoder.layer') or name.startswith('roberta.encoder.layer')
K2N = lambda s: '__sm_' + '_'.join(s.split('.'))
N2K = lambda s: '.'.join(s[5:].split('_'))
def normalized_uniform_init(w, init_scheme):
init_weight = torch.rand_like(w)
# nn.init.uniform_(init_weight, 0.0, 1.0)
if 'softmax' in init_scheme:
init_weight = F.softmax(init_weight, -1) # softmax normalize
else:
init_weight = init_weight / torch.sum(init_weight, -1, keepdim=True) # normalize
w.copy_(init_weight)
def stackbert_init(w, layer_index, init_scheme, init_noise=0.03):
init_weight = torch.zeros_like(w)
if 'noisy' in init_scheme:
init_weight.uniform_(0.0, init_noise)
init_weight[layer_index % len(init_weight)] = 1.
init_weight = init_weight / torch.sum(init_weight) # normalize
w.copy_(init_weight)
def interlace_init(w, layer_index, init_scheme, init_noise=0.03):
init_weight = torch.zeros_like(w)
if 'noisy' in init_scheme:
init_weight.uniform_(0.0, init_noise)
init_weight[layer_index // 2] = 1.0
init_weight = init_weight / torch.sum(init_weight) # normalize
w.copy_(init_weight)
class FusedDepthParams(nn.Module):
def __init__(self, layer_index, num_layers, bias=False, learnable=True, init_scheme='rand', init_noise=0.03):
super(FusedDepthParams, self).__init__()
assert init_scheme in ['rand', 'rand_softmax', 'stackbert', 'interlace', 'stackbert_noisy', 'interlace_noisy']
self.layer_index = layer_index
self.init_scheme = init_scheme
self.init_noise = init_noise
if learnable:
self.coeffs_weight = nn.Parameter(torch.zeros(num_layers))
if bias:
self.coeffs_bias = nn.Parameter(torch.zeros(num_layers))
else:
self.coeffs_bias = None
else:
self.register_buffer('coeffs_weight', torch.zeros(num_layers), persistent=True)
if bias:
self.register_buffer('coeffs_bias', torch.zeros(num_layers), persistent=True)
else:
self.coeffs_bias = None
self.reset_parameters()
def reset_parameters(self):
# init depth
if self.init_scheme in ['rand', 'rand_softmax']:
normalized_uniform_init(self.coeffs_weight, self.init_scheme)
if self.coeffs_bias is not None:
normalized_uniform_init(self.coeffs_bias, self.init_scheme)
elif self.init_scheme in ['stackbert', 'stackbert_noisy']:
stackbert_init(self.coeffs_weight, self.layer_index, self.init_scheme, self.init_noise)
if self.coeffs_bias is not None:
stackbert_init(self.coeffs_bias, self.layer_index, self.init_scheme, self.init_noise)
elif self.init_scheme in ['interlace', 'interlace_noisy']:
interlace_init(self.coeffs_weight, self.layer_index, self.init_scheme, self.init_noise)
if self.coeffs_bias is not None:
interlace_init(self.coeffs_bias, self.layer_index, self.init_scheme, self.init_noise)
class FusedWidthParams(nn.Module):
def __init__(self, small_dim, large_dim, learnable=False, init_scheme='rand', init_noise=0.03):
super(FusedWidthParams, self).__init__()
assert init_scheme in ['rand', 'rand_softmax', 'sel', 'sel_noisy']
self.init_scheme = init_scheme
self.init_noise = init_noise
if large_dim - small_dim > 0:
if learnable:
self.coeffs_weight = nn.Parameter(torch.zeros(large_dim - small_dim, small_dim))
else:
self.register_buffer('coeffs_weight', torch.zeros(large_dim - small_dim, small_dim))
else:
self.coeffs_weight = None
self.reset_parameters()
def reset_parameters(self):
if self.coeffs_weight is not None:
if self.init_scheme in ['rand', 'rand_softmax']:
normalized_uniform_init(self.coeffs_weight, self.init_scheme)
elif self.init_scheme in ['sel', 'sel_noisy']:
sel = torch.randint(0, self.coeffs_weight.shape[1], (self.coeffs_weight.shape[0],))
init_weight = torch.zeros_like(self.coeffs_weight, dtype=torch.float32)
if 'noisy' in self.init_scheme:
init_weight.uniform_(0.0, self.init_noise)
init_weight[torch.arange(self.coeffs_weight.shape[0]), sel] = 1.
self.coeffs_weight.copy_(init_weight)
class FusedLinear(nn.Module):
def __init__(self, model, module_name, in_features, out_features, layer_index=-1, init_scheme_depth='rand', init_noise_depth=0.03, learn_depth=True,
init_scheme_width='rand', init_noise_width=0.03, learn_width=True, residual=False, depth_tie=None, width_in_tie=None, width_out_tie=None, residual_noise=0.01):
super(FusedLinear, self).__init__()
self.in_features = in_features
self.out_features = out_features
# weights for attention layers if depth expansion
self.get_weights = lambda: getattr(model, K2N(module_name) + '_weight')
self.get_bias = lambda: getattr(model, K2N(module_name) + '_bias', None)
self.bias = (self.get_bias() is not None)
self.residual = residual
self.residual_noise = residual_noise
if residual:
self.residual_weight = nn.Parameter(torch.empty((self.out_features, self.in_features)))
if self.bias:
self.residual_bias = nn.Parameter(torch.empty(self.out_features))
else:
self.register_parameter('residual_bias', None)
# for embedding or classifier layer, specify layer_index to -1
if layer_index >= 0:
if depth_tie is None:
num_layers_small = self.get_weights().shape[-1]
self.fuse_depth_coeffs = FusedDepthParams(layer_index, num_layers_small, bias=self.bias,
learnable=learn_depth, init_scheme=init_scheme_depth, init_noise=init_noise_depth)
depth_tie = self.fuse_depth_coeffs
self.get_depth_coeffs = lambda: (depth_tie.coeffs_weight, getattr(depth_tie, 'coeffs_bias', depth_tie.coeffs_weight))
if width_in_tie is None:
hidden_dim_small = self.get_weights().shape[:-1] if layer_index >= 0 else self.get_weights().shape
self.fuse_width_in = FusedWidthParams(hidden_dim_small[1], self.in_features,
learnable=learn_width, init_scheme=init_scheme_width, init_noise=init_noise_width)
width_in_tie = self.fuse_width_in
if width_out_tie is None:
hidden_dim_small = self.get_weights().shape[:-1] if layer_index >= 0 else self.get_weights().shape
self.fuse_width_out = FusedWidthParams(hidden_dim_small[0], self.out_features,
learnable=learn_width, init_scheme=init_scheme_width, init_noise=init_noise_width)
width_out_tie = self.fuse_width_out
self.get_width_coeffs = lambda: (width_in_tie.coeffs_weight, width_out_tie.coeffs_weight)
self.reset_parameters()
def reset_parameters(self):
if self.residual:
nn.init.uniform_(self.residual_weight, -self.residual_noise, self.residual_noise)
if self.bias:
nn.init.uniform_(self.residual_bias, -self.residual_noise, self.residual_noise)
if hasattr(self, 'fuse_depth_coeffs'):
self.fuse_depth_coeffs.reset_parameters()
if hasattr(self, 'fuse_width_in'):
self.fuse_width_in.reset_parameters()
if hasattr(self, 'fuse_width_out'):
self.fuse_width_out.reset_parameters()
def get_params(self):
bias = None
if hasattr(self, 'get_depth_coeffs'):
coeffs_weights, coeffs_bias = self.get_depth_coeffs()
weight = torch.sum(self.get_weights() * coeffs_weights, -1)
if self.bias:
bias = torch.sum(self.get_bias() * coeffs_bias, -1)
else:
weight = self.get_weights()
if self.bias:
bias = self.get_bias()
in_dim_expand, out_dim_expand = self.get_width_coeffs()
if in_dim_expand is not None:
in_dim_expand = torch.transpose(in_dim_expand, 0, 1)
weight = torch.cat([weight, torch.matmul(weight, in_dim_expand)], 1) # expand in dimension
if out_dim_expand is not None:
weight = torch.cat([weight, torch.matmul(out_dim_expand, weight)], 0) # expand out dimension
if self.bias:
bias = torch.cat([bias, torch.matmul(out_dim_expand, bias)], 0) # expand out dimension
if self.residual:
weight = weight + self.residual_weight
if self.bias:
bias = bias + self.residual_bias
return weight, bias
def forward(self, input):
weight, bias = self.get_params()
return F.linear(input, weight, bias)
def extra_repr(self) -> str:
return 'in_features={}, out_features={}, bias={}'.format(
self.in_features, self.out_features, self.bias is not None
)
class FusedLayeredNorm(nn.Module):
def __init__(self, model, module_name, normalized_shape, layer_index=-1, init_scheme_depth='rand', init_noise_depth=0.03, learn_depth=True,
init_scheme_width='rand', init_noise_width=0.03, learn_width=True, eps=1e-5, residual=False, depth_tie=None, width_out_tie=None, residual_noise=0.01):
super(FusedLayeredNorm, self).__init__()
self.get_weights = lambda: getattr(model, K2N(module_name) + '_weight')
self.get_bias = lambda: getattr(model, K2N(module_name) + '_bias', None)
self.normalized_shape = normalized_shape
self.elementwise_affine = True # only support elementwise_affine
self.eps = eps
self.residual = residual
self.residual_noise = residual_noise
if residual:
self.residual_weight = nn.Parameter(torch.empty(self.normalized_shape))
self.residual_bias = nn.Parameter(torch.empty(self.normalized_shape))
# for embedding or classifier layer, specify layer_index to -1
if layer_index >= 0:
if depth_tie is None:
num_layers_small = self.get_weights().shape[-1]
self.fuse_depth_coeffs = FusedDepthParams(layer_index, num_layers_small, bias=True,
learnable=learn_depth, init_scheme=init_scheme_depth, init_noise=init_noise_depth)
depth_tie = self.fuse_depth_coeffs
self.get_depth_coeffs = lambda: (depth_tie.coeffs_weight, getattr(depth_tie, 'coeffs_bias', depth_tie.coeffs_weight))
if width_out_tie is None:
hidden_dim_small = self.get_weights().shape[:-1] if layer_index >= 0 else self.get_weights().shape
self.fuse_width_out = FusedWidthParams(hidden_dim_small[0], self.normalized_shape[0],
learnable=learn_width, init_scheme=init_scheme_width, init_noise=init_noise_width)
width_out_tie = self.fuse_width_out
self.get_width_coeffs = lambda: width_out_tie.coeffs_weight
def reset_parameters(self):
if self.residual:
nn.init.uniform_(self.residual_weight, -self.residual_noise, self.residual_noise)
nn.init.uniform_(self.residual_bias, -self.residual_noise, self.residual_noise)
if hasattr(self, 'fuse_depth_coeffs'):
self.fuse_depth_coeffs.reset_parameters()
if hasattr(self, 'fuse_width_out'):
self.fuse_width_out.reset_parameters()
def get_params(self):
if hasattr(self, 'get_depth_coeffs'):
coeffs_weights, coeffs_bias = self.get_depth_coeffs()
weight = torch.sum(self.get_weights() * coeffs_weights, -1)
bias = torch.sum(self.get_bias() * coeffs_bias, -1)
else:
weight = self.get_weights()
bias = self.get_bias()
out_dim_expand = self.get_width_coeffs()
if out_dim_expand is not None:
weight = torch.cat([weight, torch.matmul(out_dim_expand, weight)], 0) # expand out dimension
bias = torch.cat([bias, torch.matmul(out_dim_expand, bias)], 0) # expand out dimension
if self.residual:
weight = weight + self.residual_weight
bias = bias + self.residual_bias
return weight, bias
def forward(self, input):
weight, bias = self.get_params()
return F.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
def extra_repr(self):
return '{}, eps={}, elementwise_affine={}'.format(self.normalized_shape, self.eps, self.elementwise_affine)
class FusedEmbedding(nn.Module):
__constants__ = ['num_embeddings', 'embedding_dim', 'padding_idx', 'max_norm',
'norm_type', 'scale_grad_by_freq', 'sparse']
def __init__(self, model, module_name, num_embeddings, embedding_dim, padding_idx = None,
max_norm=None, norm_type=2., scale_grad_by_freq=False, sparse=False,
init_scheme_width='rand', init_noise_width=0.03, learn_width=True,
residual=False, width_out_tie=None, residual_noise=0.01):
super(FusedEmbedding, self).__init__()
self.get_weights = lambda: getattr(model, K2N(module_name) + '_weight')
self.num_embeddings = num_embeddings
self.embedding_dim = embedding_dim
if padding_idx is not None:
if padding_idx > 0:
assert padding_idx < self.num_embeddings, 'Padding_idx must be within num_embeddings'
elif padding_idx < 0:
assert padding_idx >= -self.num_embeddings, 'Padding_idx must be within num_embeddings'
padding_idx = self.num_embeddings + padding_idx
self.padding_idx = padding_idx
self.max_norm = max_norm
self.norm_type = norm_type
self.scale_grad_by_freq = scale_grad_by_freq
self.residual = residual
self.residual_noise = residual_noise
if residual:
self.residual_weight = nn.Parameter(torch.empty((num_embeddings, embedding_dim)))
if width_out_tie is None:
hidden_dim_small = self.get_weights().shape
self.fuse_width_out = FusedWidthParams(hidden_dim_small[1], self.embedding_dim,
learnable=learn_width, init_scheme=init_scheme_width, init_noise=init_noise_width)
width_out_tie = self.fuse_width_out
self.get_width_coeffs = lambda: width_out_tie.coeffs_weight
self.sparse = sparse
def reset_parameters(self):
if self.residual:
nn.init.uniform_(self.residual_weight, -self.residual_noise, self.residual_noise)
if hasattr(self, 'fuse_width_out'):
self.fuse_width_out.reset_parameters()
def get_params(self):
weight = self.get_weights()
out_dim_expand = self.get_width_coeffs()
if out_dim_expand is not None:
out_dim_expand = torch.transpose(out_dim_expand, 0, 1)
weight = torch.cat([weight, torch.matmul(weight, out_dim_expand)], 1) # expand out dimension
if self.residual:
weight = weight + self.residual_weight
return weight
def forward(self, input):
weight = self.get_params()
return F.embedding(
input, weight, self.padding_idx, self.max_norm,
self.norm_type, self.scale_grad_by_freq, self.sparse)
def extra_repr(self):
s = '{num_embeddings}, {embedding_dim}'
if self.padding_idx is not None:
s += ', padding_idx={padding_idx}'
if self.max_norm is not None:
s += ', max_norm={max_norm}'
if self.norm_type != 2:
s += ', norm_type={norm_type}'
if self.scale_grad_by_freq is not False:
s += ', scale_grad_by_freq={scale_grad_by_freq}'
if self.sparse is not False:
s += ', sparse=True'
return s.format(**self.__dict__)
@torch.no_grad()
def create_ligo_from_model(model_large, args, source_model=None):
# load source model from the setting
if source_model is None:
assert len(args.source_model_path) == 1, 'Not support multiple model.'
source_model_path = args.source_model_path[0]
# Small model
if source_model_path:
small_config = AutoConfig.from_pretrained(source_model_path, cache_dir=args.cache_dir)
else:
raise ValueError("No config for small model is specified.")
model_small = model_large.__class__.from_pretrained(
source_model_path,
from_tf=bool(".ckpt" in source_model_path),
config=small_config,
cache_dir=args.cache_dir,
)
# directly use given model
else:
model_small = source_model
dict_model_small = model_small.state_dict()
# save map from module to name
dict_M2N = {}
for name, module in model_large.named_modules():
# if not name.startswith('bert.encoder.layer'):
if not is_encoder_layer(name):
dict_M2N[id(module)] = name
else:
dict_M2N[id(module)] = '.'.join(name.split('.')[4:])
M2N = lambda m: dict_M2N[id(m)]
# extract parameters of embedding and classifier
# NOTE use state_dict can automatically break the tie between embedding and classifier
for name, param in dict_model_small.items():
if not is_encoder_layer(name):
if args.tune_small_model:
model_large.register_parameter(K2N(name), nn.Parameter(param, requires_grad=True))
else:
model_large.register_buffer(K2N(name), param, persistent=True)
# extract parameters of same module at different layers
if is_bert(model_small):
enc_layers = model_small.bert.encoder.layer
template_key = 'bert.encoder.layer'
elif is_roberta(model_small):
enc_layers = model_small.roberta.encoder.layer
template_key = 'roberta.encoder.layer'
else:
raise NotImplementedError
for name, param in enc_layers[0].named_parameters():
weight_list = []
for l, _ in enumerate(enc_layers):
k = f'{template_key}.{l}.{name}'
weight_list.append(dict_model_small[k])
w = torch.stack(weight_list, -1)
if args.tune_small_model:
model_large.register_parameter(K2N(name), nn.Parameter(w, requires_grad=True))
else:
model_large.register_buffer(K2N(name), w, persistent=True)
def create_embed_layer(module_large, args, width_out_tie=None):
return FusedEmbedding(model_large, M2N(module_large), module_large.num_embeddings, module_large.embedding_dim,
padding_idx=module_large.padding_idx, max_norm=module_large.max_norm, norm_type=module_large.norm_type,
scale_grad_by_freq=module_large.scale_grad_by_freq, sparse=module_large.sparse,
init_scheme_width=args.fuse_init_scheme_width, init_noise_width=args.fuse_init_noise_width, learn_width=args.tune_width,
residual=args.tune_residual, residual_noise=args.tune_residual_noise, width_out_tie=width_out_tie
)
def create_lin_layer(module_large, args, layer_index=-1, depth_tie=None, width_in_tie=None, width_out_tie=None):
return FusedLinear(model_large, M2N(module_large), module_large.in_features, module_large.out_features,
layer_index=layer_index, init_scheme_depth=args.fuse_init_scheme_depth, init_noise_depth=args.fuse_init_noise_depth, learn_depth=args.tune_depth,
init_scheme_width=args.fuse_init_scheme_width, init_noise_width=args.fuse_init_noise_width, learn_width=args.tune_width,
residual=args.tune_residual, residual_noise=args.tune_residual_noise, depth_tie=depth_tie, width_in_tie=width_in_tie, width_out_tie=width_out_tie
)
def create_ln_layer(module_large, args, layer_index=-1, depth_tie=None, width_out_tie=None):
return FusedLayeredNorm(model_large, M2N(module_large), module_large.normalized_shape, eps=module_large.eps,
layer_index=layer_index, init_scheme_depth=args.fuse_init_scheme_depth, init_noise_depth=args.fuse_init_noise_depth, learn_depth=args.tune_depth,
init_scheme_width=args.fuse_init_scheme_width, init_noise_width=args.fuse_init_noise_width, learn_width=args.tune_width,
residual=args.tune_residual, residual_noise=args.tune_residual_noise, depth_tie=depth_tie, width_out_tie=width_out_tie
)
#### Bert2Bert style coefficient tying
kwargs_depth_param = dict(learnable=args.tune_depth, init_scheme=args.fuse_init_scheme_depth, init_noise=args.fuse_init_noise_depth)
kwargs_width_param = dict(learnable=args.tune_width, init_scheme=args.fuse_init_scheme_width, init_noise=args.fuse_init_noise_width)
# Embedding module
if is_bert(model_small) and is_bert(model_large):
emb_small, emb_large = model_small.bert.embeddings, model_large.bert.embeddings
elif is_roberta(model_small) and is_roberta(model_large):
emb_small, emb_large = model_small.roberta.embeddings, model_large.roberta.embeddings
else:
raise NotImplementedError
if args.fuse_tie_param:
setattr(emb_large, 'fuse_width_emb', FusedWidthParams(emb_small.word_embeddings.weight.shape[-1], emb_large.word_embeddings.weight.shape[-1], **kwargs_width_param))
else:
setattr(emb_large, 'fuse_width_emb', None)
g_e = getattr(emb_large, 'fuse_width_emb')
setattr(emb_large, 'word_embeddings', create_embed_layer(emb_large.word_embeddings, args, width_out_tie=g_e))
setattr(emb_large, 'position_embeddings', create_embed_layer(emb_large.position_embeddings, args, width_out_tie=g_e))
setattr(emb_large, 'token_type_embeddings', create_embed_layer(emb_large.token_type_embeddings, args, width_out_tie=g_e))
setattr(emb_large, 'LayerNorm', create_ln_layer(emb_large.LayerNorm, args, layer_index=-1, width_out_tie=g_e))
# Encoder layers
gs = [] # index of selected columns
if is_bert(model_small) and is_bert(model_large):
small_layers, large_layers = model_small.bert.encoder.layer, model_large.bert.encoder.layer
elif is_roberta(model_small) and is_roberta(model_large):
small_layers, large_layers = model_small.roberta.encoder.layer, model_large.roberta.encoder.layer
else:
raise NotImplementedError
for i, l_large in enumerate(large_layers):
if args.fuse_tie_param:
setattr(l_large, 'fuse_width_key', FusedWidthParams(small_layers[0].attention.self.key.weight.shape[0], l_large.attention.self.key.weight.shape[0], **kwargs_width_param))
setattr(l_large, 'fuse_width_query', FusedWidthParams(small_layers[0].attention.self.query.weight.shape[0], l_large.attention.self.query.weight.shape[0], **kwargs_width_param))
setattr(l_large, 'fuse_width_value', FusedWidthParams(small_layers[0].attention.self.value.weight.shape[0], l_large.attention.self.value.weight.shape[0], **kwargs_width_param))
setattr(l_large, 'fuse_width_ffn', FusedWidthParams(small_layers[0].intermediate.dense.weight.shape[0], l_large.intermediate.dense.weight.shape[0], **kwargs_width_param))
else:
setattr(l_large, 'fuse_width_key', None)
setattr(l_large, 'fuse_width_query', None)
setattr(l_large, 'fuse_width_value', None)
setattr(l_large, 'fuse_width_ffn', None)
# MHA - Attention
attn_large = l_large.attention.self
for name in ['query', 'key', 'value']:
setattr(attn_large, name, create_lin_layer(getattr(attn_large, name), args, layer_index=i, width_in_tie=g_e, width_out_tie=getattr(l_large, f'fuse_width_{name}')))
# MHA - W_o
setattr(l_large.attention.output, 'dense', create_lin_layer(l_large.attention.output.dense, args, layer_index=i, width_in_tie=getattr(l_large, f'fuse_width_value'), width_out_tie=g_e))
# MHA - LayerNorm
setattr(l_large.attention.output, 'LayerNorm', create_ln_layer(l_large.attention.output.LayerNorm, args, layer_index=i, width_out_tie=g_e))
# FFN - Layer 1
setattr(l_large.intermediate, 'dense', create_lin_layer(l_large.intermediate.dense, args, layer_index=i, width_in_tie=g_e, width_out_tie=getattr(l_large, 'fuse_width_ffn')))
# FFN - Layer 2
setattr(l_large.output, 'dense', create_lin_layer(l_large.output.dense, args, layer_index=i, width_in_tie=getattr(l_large, 'fuse_width_ffn'), width_out_tie=g_e))
# FFN LayerNorm
setattr(l_large.output, 'LayerNorm', create_ln_layer(l_large.output.LayerNorm, args, layer_index=i, width_out_tie=g_e))
# Classifier
if is_bert(model_small) and is_bert(model_large):
cls_small, cls_large = model_small.cls.predictions, model_large.cls.predictions
if args.fuse_tie_param:
setattr(cls_large, 'fuse_width_cls', FusedWidthParams(cls_small.transform.dense.weight.shape[0], cls_large.transform.dense.weight.shape[0], **kwargs_width_param))
else:
setattr(cls_large, 'fuse_width_cls', None)
setattr(cls_large.transform, 'dense', create_lin_layer(cls_large.transform.dense, args, layer_index=-1, width_in_tie=g_e, width_out_tie=getattr(cls_large, 'fuse_width_cls')))
setattr(cls_large.transform, 'LayerNorm', create_ln_layer(cls_large.transform.LayerNorm, args, layer_index=-1, width_out_tie=getattr(cls_large, 'fuse_width_cls')))
setattr(cls_large, 'decoder', create_lin_layer(cls_large.decoder, args, layer_index=-1, width_in_tie=getattr(cls_large, 'fuse_width_cls'), width_out_tie=None))
elif is_roberta(model_small) and is_roberta(model_large):
cls_small, cls_large = model_small.lm_head, model_large.lm_head
if args.fuse_tie_param:
setattr(cls_large, 'fuse_width_cls', FusedWidthParams(cls_small.dense.weight.shape[0], cls_large.dense.weight.shape[0], **kwargs_width_param))
else:
setattr(cls_large, 'fuse_width_cls', None)
setattr(cls_large, 'dense', create_lin_layer(cls_large.dense, args, layer_index=-1, width_in_tie=g_e, width_out_tie=getattr(cls_large, 'fuse_width_cls')))
setattr(cls_large, 'layer_norm', create_ln_layer(cls_large.layer_norm, args, layer_index=-1, width_out_tie=getattr(cls_large, 'fuse_width_cls')))
setattr(cls_large, 'decoder', create_lin_layer(cls_large.decoder, args, layer_index=-1, width_in_tie=getattr(cls_large, 'fuse_width_cls'), width_out_tie=None))
else:
raise NotImplementedError
return model_large
@torch.no_grad()
def initialize_model_with_ligo(model_large, args):
# load coefficient model
coeff_model_path = args.pretrained_ligo_path
dict_model_coeff = torch.load(os.path.join(coeff_model_path, 'pytorch_model.bin'), map_location=torch.device('cpu'))
model_coeff = model_large.__class__(config=model_large.config, args=args)
model_coeff = create_ligo_from_model(model_coeff, args)
model_coeff.load_state_dict(dict_model_coeff)
modules_coeff = {name:module for name, module in model_coeff.named_modules()}
for name, module in model_large.named_modules():
if isinstance(module, (nn.Linear, nn.LayerNorm)):
module.weight.copy_(modules_coeff[name].get_params()[0])
if hasattr(module, 'bias'):
module.bias.copy_(modules_coeff[name].get_params()[1])
elif isinstance(module, nn.Embedding):
module.weight.copy_(modules_coeff[name].get_params())
return model_large