-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchickens-no-corr-gp2.stan
executable file
·56 lines (56 loc) · 1.35 KB
/
chickens-no-corr-gp2.stan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
functions {
matrix gp_periodic_cov(real[] x, real alpha, real rho, real period) {
int L = size(x);
matrix[L, L] x_diff;
for (i in 1:L)
for (j in 1:L)
x_diff[i, j] = fabs(x[i] - x[j]);
return square(alpha) * exp(-2 * square(sin(pi() * x_diff / period)) / square(rho));
}
}
data {
int N;
int J;
vector[N] y;
vector[N] z;
vector[N] se;
vector[J] x;
int<lower=1, upper=J> expt_id[N];
}
transformed data {
real delta = 1e-9;
real x_array[J] = to_array_1d(x);
}
parameters {
real mu_theta;
real mu_b;
real<lower=0> sigma_b;
vector[J] eta_theta;
vector[J] eta_b;
real<lower=0> rho_theta;
real<lower=0> alpha_theta;
real<lower=0> eta_period;
}
transformed parameters {
vector[J] theta;
vector[J] b;
real<lower=0> period = 30 + eta_period * 0.25;
b = mu_b + sigma_b * eta_b;
{
matrix[J, J] L_K_theta;
matrix[J, J] K_theta =
gp_periodic_cov(x_array, alpha_theta, rho_theta, period);
// diagonal elements
for (j in 1:J)
K_theta[j, j] = K_theta[j, j] + delta;
L_K_theta = cholesky_decompose(K_theta);
theta = mu_theta + L_K_theta * eta_theta;
}
}
model {
y ~ normal(b[expt_id] + theta[expt_id] .* z, se);
eta_theta ~ normal(0, 1);
eta_b ~ normal(0, 1);
rho_theta ~ inv_gamma(5, 0.05);
eta_period ~ normal(0, 1);
}