-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplmuChecker.py
80 lines (73 loc) · 2.76 KB
/
plmuChecker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import copy
import time
MAXITER = 1000
variables = {}
model = None
printInfo = False
# naive method, approximates fixpoints
def checkNaive(formula, state):
global variables
if formula.type == "NULLARY":
if formula.op.type == "VAL":
return formula.op.val
elif formula.op.type == "VAR":
return variables[formula.op.var][state]
elif formula.op.type == "LABEL":
return model.labels[state]
elif formula.type == "UNARY":
if formula.op.type == "DIAMOND":
val = 0.0
for t in model.outgoing(state, formula.op.action):
sum = 0.0
for s in t.enddist:
sum += t.enddist[s] * checkNaive(formula.subformulas[0], s)
if sum > val:
val = sum
return val
elif formula.op.type == "BOX":
val = 1.0
for t in model.outgoing(state, formula.op.action):
sum = 0.0
for s in t.enddist:
sum += t.enddist[s] * checkNaive(formula.subformulas[0], s)
if sum < val:
val = sum
return val
elif formula.op.type in ["LEASTFP", "GREATESTFP"]:
i = 0
var = formula.op.var
newVars = ([0.0] if formula.op.type == "LEASTFP" else [1.0]) * model.numstates
while variables[var] != newVars and i < MAXITER:
variables[var] = copy.copy(newVars)
for s in range(model.numstates):
newVars[s] = checkNaive(formula.subformulas[0], s)
if printInfo:
print("Iteration " + str(i) + ": " + str(variables))
i += 1
return variables[var][state]
elif formula.type == "BINARY":
val1 = checkNaive(formula.subformulas[0], state)
val2 = checkNaive(formula.subformulas[1], state)
if formula.op.type == "AND":
return min(val1, val2)
if formula.op.type == "OR":
return max(val1, val2)
if formula.op.type == "PRODUCT":
return val1 * val2
if formula.op.type == "COPRODUCT":
return val1 + val2 - val1 * val2
if formula.op.type == "TCOSUM":
return max(0.0, val1 + val2 - 1.0)
if formula.op.type == "TSUM":
return min(1.0, val1 + val2)
if formula.op.type == "LAMBDA":
return formula.op.val * val1 + (1.0 - formula.op.val) * val2
def checkNaiveInit(ts, formula, verbose):
global model, variables, printInfo
model = ts
printInfo = verbose
variables = {var: [] for var in formula.vars}
start = time.clock()
value = checkNaive(formula, model.initstate)
end = time.clock()
return value, end - start