-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwebcam_demo.py
585 lines (506 loc) · 20.4 KB
/
webcam_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import time
from collections import deque
from queue import Queue
from threading import Event, Lock, Thread
import cv2
import numpy as np
from mmpose.apis import (get_track_id, inference_top_down_pose_model,
init_pose_model, vis_pose_result)
from mmpose.core import apply_bugeye_effect, apply_sunglasses_effect
from mmpose.utils import StopWatch
try:
from mmdet.apis import inference_detector, init_detector
has_mmdet = True
except (ImportError, ModuleNotFoundError):
has_mmdet = False
try:
import psutil
psutil_proc = psutil.Process()
except (ImportError, ModuleNotFoundError):
psutil_proc = None
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--cam-id', type=str, default='0')
parser.add_argument(
'--det-config',
type=str,
default='demo/mmdetection_cfg/'
'ssdlite_mobilenetv2_scratch_600e_coco.py',
help='Config file for detection')
parser.add_argument(
'--det-checkpoint',
type=str,
default='https://download.openmmlab.com/mmdetection/v2.0/ssd/'
'ssdlite_mobilenetv2_scratch_600e_coco/ssdlite_mobilenetv2_'
'scratch_600e_coco_20210629_110627-974d9307.pth',
help='Checkpoint file for detection')
parser.add_argument(
'--enable-human-pose',
type=int,
default=1,
help='Enable human pose estimation')
parser.add_argument(
'--enable-animal-pose',
type=int,
default=0,
help='Enable animal pose estimation')
parser.add_argument(
'--human-pose-config',
type=str,
default='configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/'
'coco-wholebody/vipnas_res50_coco_wholebody_256x192_dark.py',
help='Config file for human pose')
parser.add_argument(
'--human-pose-checkpoint',
type=str,
default='https://download.openmmlab.com/'
'mmpose/top_down/vipnas/'
'vipnas_res50_wholebody_256x192_dark-67c0ce35_20211112.pth',
help='Checkpoint file for human pose')
parser.add_argument(
'--human-det-ids',
type=int,
default=[1],
nargs='+',
help='Object category label of human in detection results.'
'Default is [1(person)], following COCO definition.')
parser.add_argument(
'--animal-pose-config',
type=str,
default='configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/'
'animalpose/hrnet_w32_animalpose_256x256.py',
help='Config file for animal pose')
parser.add_argument(
'--animal-pose-checkpoint',
type=str,
default='https://download.openmmlab.com/mmpose/animal/hrnet/'
'hrnet_w32_animalpose_256x256-1aa7f075_20210426.pth',
help='Checkpoint file for animal pose')
parser.add_argument(
'--animal-det-ids',
type=int,
default=[16, 17, 18, 19, 20],
nargs='+',
help='Object category label of animals in detection results'
'Default is [16(cat), 17(dog), 18(horse), 19(sheep), 20(cow)], '
'following COCO definition.')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
parser.add_argument(
'--det-score-thr',
type=float,
default=0.5,
help='bbox score threshold')
parser.add_argument(
'--kpt-thr', type=float, default=0.3, help='bbox score threshold')
parser.add_argument(
'--vis-mode',
type=int,
default=2,
help='0-none. 1-detection only. 2-detection and pose.')
parser.add_argument(
'--sunglasses', action='store_true', help='Apply `sunglasses` effect.')
parser.add_argument(
'--bugeye', action='store_true', help='Apply `bug-eye` effect.')
parser.add_argument(
'--out-video-file',
type=str,
default=None,
help='Record the video into a file. This may reduce the frame rate')
parser.add_argument(
'--out-video-fps',
type=int,
default=20,
help='Set the FPS of the output video file.')
parser.add_argument(
'--buffer-size',
type=int,
default=-1,
help='Frame buffer size. If set -1, the buffer size will be '
'automatically inferred from the display delay time. Default: -1')
parser.add_argument(
'--inference-fps',
type=int,
default=10,
help='Maximum inference FPS. This is to limit the resource consuming '
'especially when the detection and pose model are lightweight and '
'very fast. Default: 10.')
parser.add_argument(
'--display-delay',
type=int,
default=0,
help='Delay the output video in milliseconds. This can be used to '
'align the output video and inference results. The delay can be '
'disabled by setting a non-positive delay time. Default: 0')
parser.add_argument(
'--synchronous-mode',
action='store_true',
help='Enable synchronous mode that video I/O and inference will be '
'temporally aligned. Note that this will reduce the display FPS.')
return parser.parse_args()
def process_mmdet_results(mmdet_results, class_names=None, cat_ids=1):
"""Process mmdet results to mmpose input format.
Args:
mmdet_results: raw output of mmdet model
class_names: class names of mmdet model
cat_ids (int or List[int]): category id list that will be preserved
Returns:
List[Dict]: detection results for mmpose input
"""
if isinstance(mmdet_results, tuple):
mmdet_results = mmdet_results[0]
if not isinstance(cat_ids, (list, tuple)):
cat_ids = [cat_ids]
# only keep bboxes of interested classes
bbox_results = [mmdet_results[i - 1] for i in cat_ids]
bboxes = np.vstack(bbox_results)
# get textual labels of classes
labels = np.concatenate([
np.full(bbox.shape[0], i - 1, dtype=np.int32)
for i, bbox in zip(cat_ids, bbox_results)
])
if class_names is None:
labels = [f'class: {i}' for i in labels]
else:
labels = [class_names[i] for i in labels]
det_results = []
for bbox, label in zip(bboxes, labels):
det_result = dict(bbox=bbox, label=label)
det_results.append(det_result)
return det_results
def read_camera():
# init video reader
print('Thread "input" started')
cam_id = args.cam_id
if cam_id.isdigit():
cam_id = int(cam_id)
vid_cap = cv2.VideoCapture(cam_id)
if not vid_cap.isOpened():
print(f'Cannot open camera (ID={cam_id})')
exit()
while not event_exit.is_set():
# capture a camera frame
ret_val, frame = vid_cap.read()
if ret_val:
ts_input = time.time()
event_inference_done.clear()
with input_queue_mutex:
input_queue.append((ts_input, frame))
if args.synchronous_mode:
event_inference_done.wait()
frame_buffer.put((ts_input, frame))
else:
# input ending signal
frame_buffer.put((None, None))
break
vid_cap.release()
def inference_detection():
print('Thread "det" started')
stop_watch = StopWatch(window=10)
min_interval = 1.0 / args.inference_fps
_ts_last = None # timestamp when last inference was done
while True:
while len(input_queue) < 1:
time.sleep(0.001)
with input_queue_mutex:
ts_input, frame = input_queue.popleft()
# inference detection
with stop_watch.timeit('Det'):
mmdet_results = inference_detector(det_model, frame)
t_info = stop_watch.report_strings()
with det_result_queue_mutex:
det_result_queue.append((ts_input, frame, t_info, mmdet_results))
# limit the inference FPS
_ts = time.time()
if _ts_last is not None and _ts - _ts_last < min_interval:
time.sleep(min_interval - _ts + _ts_last)
_ts_last = time.time()
def inference_pose():
print('Thread "pose" started')
stop_watch = StopWatch(window=10)
while True:
while len(det_result_queue) < 1:
time.sleep(0.001)
with det_result_queue_mutex:
ts_input, frame, t_info, mmdet_results = det_result_queue.popleft()
pose_results_list = []
for model_info, pose_history in zip(pose_model_list,
pose_history_list):
model_name = model_info['name']
pose_model = model_info['model']
cat_ids = model_info['cat_ids']
pose_results_last = pose_history['pose_results_last']
next_id = pose_history['next_id']
with stop_watch.timeit(model_name):
# process mmdet results
det_results = process_mmdet_results(
mmdet_results,
class_names=det_model.CLASSES,
cat_ids=cat_ids)
# inference pose model
dataset_name = pose_model.cfg.data['test']['type']
pose_results, _ = inference_top_down_pose_model(
pose_model,
frame,
det_results,
bbox_thr=args.det_score_thr,
format='xyxy',
dataset=dataset_name)
pose_results, next_id = get_track_id(
pose_results,
pose_results_last,
next_id,
use_oks=False,
tracking_thr=0.3,
use_one_euro=True,
fps=None)
pose_results_list.append(pose_results)
# update pose history
pose_history['pose_results_last'] = pose_results
pose_history['next_id'] = next_id
t_info += stop_watch.report_strings()
with pose_result_queue_mutex:
pose_result_queue.append((ts_input, t_info, pose_results_list))
event_inference_done.set()
def display():
print('Thread "display" started')
stop_watch = StopWatch(window=10)
# initialize result status
ts_inference = None # timestamp of the latest inference result
fps_inference = 0. # infenrece FPS
t_delay_inference = 0. # inference result time delay
pose_results_list = None # latest inference result
t_info = [] # upstream time information (list[str])
# initialize visualization and output
sunglasses_img = None # resource image for sunglasses effect
text_color = (228, 183, 61) # text color to show time/system information
vid_out = None # video writer
# show instructions
print('Keyboard shortcuts: ')
print('"v": Toggle the visualization of bounding boxes and poses.')
print('"s": Toggle the sunglasses effect.')
print('"b": Toggle the bug-eye effect.')
print('"Q", "q" or Esc: Exit.')
while True:
with stop_watch.timeit('_FPS_'):
# acquire a frame from buffer
ts_input, frame = frame_buffer.get()
# input ending signal
if ts_input is None:
break
img = frame
# get pose estimation results
if len(pose_result_queue) > 0:
with pose_result_queue_mutex:
_result = pose_result_queue.popleft()
_ts_input, t_info, pose_results_list = _result
_ts = time.time()
if ts_inference is not None:
fps_inference = 1.0 / (_ts - ts_inference)
ts_inference = _ts
t_delay_inference = (_ts - _ts_input) * 1000
# visualize detection and pose results
if pose_results_list is not None:
for model_info, pose_results in zip(pose_model_list,
pose_results_list):
pose_model = model_info['model']
bbox_color = model_info['bbox_color']
dataset_name = pose_model.cfg.data['test']['type']
# show pose results
if args.vis_mode == 1:
img = vis_pose_result(
pose_model,
img,
pose_results,
radius=4,
thickness=2,
dataset=dataset_name,
kpt_score_thr=1e7,
bbox_color=bbox_color)
elif args.vis_mode == 2:
img = vis_pose_result(
pose_model,
img,
pose_results,
radius=4,
thickness=2,
dataset=dataset_name,
kpt_score_thr=args.kpt_thr,
bbox_color=bbox_color)
# sunglasses effect
if args.sunglasses:
if dataset_name in {
'TopDownCocoDataset',
'TopDownCocoWholeBodyDataset'
}:
left_eye_idx = 1
right_eye_idx = 2
elif dataset_name == 'AnimalPoseDataset':
left_eye_idx = 0
right_eye_idx = 1
else:
raise ValueError(
'Sunglasses effect does not support'
f'{dataset_name}')
if sunglasses_img is None:
# The image attributes to:
# https://www.vecteezy.com/free-vector/glass
# Glass Vectors by Vecteezy
sunglasses_img = cv2.imread(
'demo/resources/sunglasses.jpg')
img = apply_sunglasses_effect(img, pose_results,
sunglasses_img,
left_eye_idx,
right_eye_idx)
# bug-eye effect
if args.bugeye:
if dataset_name in {
'TopDownCocoDataset',
'TopDownCocoWholeBodyDataset'
}:
left_eye_idx = 1
right_eye_idx = 2
elif dataset_name == 'AnimalPoseDataset':
left_eye_idx = 0
right_eye_idx = 1
else:
raise ValueError('Bug-eye effect does not support'
f'{dataset_name}')
img = apply_bugeye_effect(img, pose_results,
left_eye_idx, right_eye_idx)
# delay control
if args.display_delay > 0:
t_sleep = args.display_delay * 0.001 - (time.time() - ts_input)
if t_sleep > 0:
time.sleep(t_sleep)
t_delay = (time.time() - ts_input) * 1000
# show time information
t_info_display = stop_watch.report_strings() # display fps
t_info_display.append(f'Inference FPS: {fps_inference:>5.1f}')
t_info_display.append(f'Delay: {t_delay:>3.0f}')
t_info_display.append(
f'Inference Delay: {t_delay_inference:>3.0f}')
t_info_str = ' | '.join(t_info_display + t_info)
cv2.putText(img, t_info_str, (20, 20), cv2.FONT_HERSHEY_DUPLEX,
0.3, text_color, 1)
# collect system information
sys_info = [
f'RES: {img.shape[1]}x{img.shape[0]}',
f'Buffer: {frame_buffer.qsize()}/{frame_buffer.maxsize}'
]
if psutil_proc is not None:
sys_info += [
f'CPU: {psutil_proc.cpu_percent():.1f}%',
f'MEM: {psutil_proc.memory_percent():.1f}%'
]
sys_info_str = ' | '.join(sys_info)
cv2.putText(img, sys_info_str, (20, 40), cv2.FONT_HERSHEY_DUPLEX,
0.3, text_color, 1)
# save the output video frame
if args.out_video_file is not None:
if vid_out is None:
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
fps = args.out_video_fps
frame_size = (img.shape[1], img.shape[0])
vid_out = cv2.VideoWriter(args.out_video_file, fourcc, fps,
frame_size)
vid_out.write(img)
# display
cv2.imshow('mmpose webcam demo', img)
keyboard_input = cv2.waitKey(1)
if keyboard_input in (27, ord('q'), ord('Q')):
break
elif keyboard_input == ord('s'):
args.sunglasses = not args.sunglasses
elif keyboard_input == ord('b'):
args.bugeye = not args.bugeye
elif keyboard_input == ord('v'):
args.vis_mode = (args.vis_mode + 1) % 3
cv2.destroyAllWindows()
if vid_out is not None:
vid_out.release()
event_exit.set()
def main():
global args
global frame_buffer
global input_queue, input_queue_mutex
global det_result_queue, det_result_queue_mutex
global pose_result_queue, pose_result_queue_mutex
global det_model, pose_model_list, pose_history_list
global event_exit, event_inference_done
args = parse_args()
assert has_mmdet, 'Please install mmdet to run the demo.'
assert args.det_config is not None
assert args.det_checkpoint is not None
# build detection model
det_model = init_detector(
args.det_config, args.det_checkpoint, device=args.device.lower())
# build pose models
pose_model_list = []
if args.enable_human_pose:
pose_model = init_pose_model(
args.human_pose_config,
args.human_pose_checkpoint,
device=args.device.lower())
model_info = {
'name': 'HumanPose',
'model': pose_model,
'cat_ids': args.human_det_ids,
'bbox_color': (148, 139, 255),
}
pose_model_list.append(model_info)
if args.enable_animal_pose:
pose_model = init_pose_model(
args.animal_pose_config,
args.animal_pose_checkpoint,
device=args.device.lower())
model_info = {
'name': 'AnimalPose',
'model': pose_model,
'cat_ids': args.animal_det_ids,
'bbox_color': 'cyan',
}
pose_model_list.append(model_info)
# store pose history for pose tracking
pose_history_list = []
for _ in range(len(pose_model_list)):
pose_history_list.append({'pose_results_last': [], 'next_id': 0})
# frame buffer
if args.buffer_size > 0:
buffer_size = args.buffer_size
else:
# infer buffer size from the display delay time
# assume that the maximum video fps is 30
buffer_size = round(30 * (1 + max(args.display_delay, 0) / 1000.))
frame_buffer = Queue(maxsize=buffer_size)
# queue of input frames
# element: (timestamp, frame)
input_queue = deque(maxlen=1)
input_queue_mutex = Lock()
# queue of detection results
# element: tuple(timestamp, frame, time_info, det_results)
det_result_queue = deque(maxlen=1)
det_result_queue_mutex = Lock()
# queue of detection/pose results
# element: (timestamp, time_info, pose_results_list)
pose_result_queue = deque(maxlen=1)
pose_result_queue_mutex = Lock()
try:
event_exit = Event()
event_inference_done = Event()
t_input = Thread(target=read_camera, args=())
t_det = Thread(target=inference_detection, args=(), daemon=True)
t_pose = Thread(target=inference_pose, args=(), daemon=True)
t_input.start()
t_det.start()
t_pose.start()
# run display in the main thread
display()
# join the input thread (non-daemon)
t_input.join()
except KeyboardInterrupt:
pass
if __name__ == '__main__':
main()