It is recommended to symlink the dataset root to $MMPOSE/data
.
If your folder structure is different, you may need to change the corresponding paths in config files.
MMPose supported datasets:
- 300W [ Homepage ]
- WFLW [ Homepage ]
- AFLW [ Homepage ]
- COFW [ Homepage ]
- COCO-WholeBody-Face [ Homepage ]
300W (IMAVIS'2016)
@article{sagonas2016300,
title={300 faces in-the-wild challenge: Database and results},
author={Sagonas, Christos and Antonakos, Epameinondas and Tzimiropoulos, Georgios and Zafeiriou, Stefanos and Pantic, Maja},
journal={Image and vision computing},
volume={47},
pages={3--18},
year={2016},
publisher={Elsevier}
}
For 300W data, please download images from 300W Dataset. Please download the annotation files from 300w_annotations. Extract them under {MMPose}/data, and make them look like this:
mmpose
├── mmpose
├── docs
├── tests
├── tools
├── configs
`── data
│── 300w
|── annotations
| |── face_landmarks_300w_train.json
| |── face_landmarks_300w_valid.json
| |── face_landmarks_300w_valid_common.json
| |── face_landmarks_300w_valid_challenge.json
| |── face_landmarks_300w_test.json
`── images
|── afw
| |── 1051618982_1.jpg
| |── 111076519_1.jpg
| ...
|── helen
| |── trainset
| | |── 100032540_1.jpg
| | |── 100040721_1.jpg
| | ...
| |── testset
| | |── 296814969_3.jpg
| | |── 2968560214_1.jpg
| | ...
|── ibug
| |── image_003_1.jpg
| |── image_004_1.jpg
| ...
|── lfpw
| |── trainset
| | |── image_0001.png
| | |── image_0002.png
| | ...
| |── testset
| | |── image_0001.png
| | |── image_0002.png
| | ...
`── Test
|── 01_Indoor
| |── indoor_001.png
| |── indoor_002.png
| ...
`── 02_Outdoor
|── outdoor_001.png
|── outdoor_002.png
...
WFLW (CVPR'2018)
@inproceedings{wu2018look,
title={Look at boundary: A boundary-aware face alignment algorithm},
author={Wu, Wayne and Qian, Chen and Yang, Shuo and Wang, Quan and Cai, Yici and Zhou, Qiang},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={2129--2138},
year={2018}
}
For WFLW data, please download images from WFLW Dataset. Please download the annotation files from wflw_annotations. Extract them under {MMPose}/data, and make them look like this:
mmpose
├── mmpose
├── docs
├── tests
├── tools
├── configs
`── data
│── wflw
|── annotations
| |── face_landmarks_wflw_train.json
| |── face_landmarks_wflw_test.json
| |── face_landmarks_wflw_test_blur.json
| |── face_landmarks_wflw_test_occlusion.json
| |── face_landmarks_wflw_test_expression.json
| |── face_landmarks_wflw_test_largepose.json
| |── face_landmarks_wflw_test_illumination.json
| |── face_landmarks_wflw_test_makeup.json
|
`── images
|── 0--Parade
| |── 0_Parade_marchingband_1_1015.jpg
| |── 0_Parade_marchingband_1_1031.jpg
| ...
|── 1--Handshaking
| |── 1_Handshaking_Handshaking_1_105.jpg
| |── 1_Handshaking_Handshaking_1_107.jpg
| ...
...
AFLW (ICCVW'2011)
@inproceedings{koestinger2011annotated,
title={Annotated facial landmarks in the wild: A large-scale, real-world database for facial landmark localization},
author={Koestinger, Martin and Wohlhart, Paul and Roth, Peter M and Bischof, Horst},
booktitle={2011 IEEE international conference on computer vision workshops (ICCV workshops)},
pages={2144--2151},
year={2011},
organization={IEEE}
}
For AFLW data, please download images from AFLW Dataset. Please download the annotation files from aflw_annotations. Extract them under {MMPose}/data, and make them look like this:
mmpose
├── mmpose
├── docs
├── tests
├── tools
├── configs
`── data
│── aflw
|── annotations
| |── face_landmarks_aflw_train.json
| |── face_landmarks_aflw_test_frontal.json
| |── face_landmarks_aflw_test.json
`── images
|── flickr
|── 0
| |── image00002.jpg
| |── image00013.jpg
| ...
|── 2
| |── image00004.jpg
| |── image00006.jpg
| ...
`── 3
|── image00032.jpg
|── image00035.jpg
...
COFW (ICCV'2013)
@inproceedings{burgos2013robust,
title={Robust face landmark estimation under occlusion},
author={Burgos-Artizzu, Xavier P and Perona, Pietro and Doll{\'a}r, Piotr},
booktitle={Proceedings of the IEEE international conference on computer vision},
pages={1513--1520},
year={2013}
}
For COFW data, please download from COFW Dataset (Color Images).
Move COFW_train_color.mat
and COFW_test_color.mat
to data/cofw/
and make them look like:
mmpose
├── mmpose
├── docs
├── tests
├── tools
├── configs
`── data
│── cofw
|── COFW_train_color.mat
|── COFW_test_color.mat
Run the following script under {MMPose}/data
python tools/dataset/parse_cofw_dataset.py
And you will get
mmpose
├── mmpose
├── docs
├── tests
├── tools
├── configs
`── data
│── cofw
|── COFW_train_color.mat
|── COFW_test_color.mat
|── annotations
| |── cofw_train.json
| |── cofw_test.json
|── images
|── 000001.jpg
|── 000002.jpg
[DATASET]
@inproceedings{jin2020whole,
title={Whole-Body Human Pose Estimation in the Wild},
author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2020}
}
For COCO-WholeBody dataset, images can be downloaded from COCO download, 2017 Train/Val is needed for COCO keypoints training and validation. Download COCO-WholeBody annotations for COCO-WholeBody annotations for Train / Validation (Google Drive). Download person detection result of COCO val2017 from OneDrive or GoogleDrive. Download and extract them under $MMPOSE/data, and make them look like this:
mmpose
├── mmpose
├── docs
├── tests
├── tools
├── configs
`── data
│── coco
│-- annotations
│ │-- coco_wholebody_train_v1.0.json
│ |-- coco_wholebody_val_v1.0.json
|-- person_detection_results
| |-- COCO_val2017_detections_AP_H_56_person.json
│-- train2017
│ │-- 000000000009.jpg
│ │-- 000000000025.jpg
│ │-- 000000000030.jpg
│ │-- ...
`-- val2017
│-- 000000000139.jpg
│-- 000000000285.jpg
│-- 000000000632.jpg
│-- ...
Please also install the latest version of Extended COCO API to support COCO-WholeBody evaluation:
pip install xtcocotools