-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathoptim.py
23 lines (19 loc) · 854 Bytes
/
optim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from torch.optim.lr_scheduler import _LRScheduler
class GradualWarmupScheduler(_LRScheduler):
def __init__(self, optimizer, warmup_iter, after_scheduler):
self.warmup_iter = warmup_iter
self.after_scheduler = after_scheduler
super(GradualWarmupScheduler, self).__init__(optimizer)
def step(self, epoch=None):
if epoch is None:
epoch = self.last_epoch + 1
self.last_epoch = epoch
if epoch > self.warmup_iter:
self.after_scheduler.step(epoch - self.warmup_iter)
else:
super(GradualWarmupScheduler, self).step(epoch)
def get_lr(self):
if self.last_epoch > self.warmup_iter:
return self.after_scheduler.get_lr()
else:
return [base_lr * (float(self.last_epoch) / self.warmup_iter) for base_lr in self.base_lrs]