-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdependencies_StandAlone.py
324 lines (269 loc) · 10.3 KB
/
dependencies_StandAlone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
#!/usr/bin/env python
import argparse
import re
import commands, sys
#import fire
def bfs(graph, start, debug=False):
"""
Breadth First Search (BFS)
Given a node in a graph, BFS will find all nodes connected to this
node. The distance between nodes is measured in HOPS. It will find
all nodes at distance 'k' before finding any nodes at a further
distance. It will return the full list of connected nodes.
PseudoCode:
BFS(G,s)
for each vertex u in V[G] - {s} do
state[u] = WHITE
predecessor[u] = nil
state[s] = GRAY
predecessor[s] = nil
QUEUE = {s}
while QUEUE != 0 do
u = dequeue[Q]
process vertex u as desired
for each v in Adjacent[u] do
process edge (u,v) as desired (e.g. distance[v] = distance[u] + 1)
if state[v] = WHITE then
state[v] = GRAY
predecessor[v] = u
enqueue[Q,v]
state[u] = BLACK
"""
result = []
for v in graph.getVertices():
a_vertex = graph.getVertex(v)
a_vertex.setColor(Vertex.WHITE)
a_vertex.setDistance(0)
a_vertex.setPred(None)
start.setDistance(0)
start.setPred(None)
vertex_queue = Queue()
vertex_queue.enqueue(start)
while (vertex_queue.size() > 0):
current_vertex = vertex_queue.dequeue()
result.append(current_vertex)
if debug:
print current_vertex
for v in current_vertex.getConnections():
if v.getColor() == Vertex.WHITE:
v.setColor(Vertex.GRAY)
v.setDistance(current_vertex.getDistance() + 1)
v.setPred(current_vertex)
vertex_queue.enqueue(v)
current_vertex.setColor(Vertex.BLACK)
return result
# Bradley N. Miller, David L. Ranum
# Introduction to Data Structures and Algorithms in Python
# Copyright 2005
#
#queue.py
class Queue:
def __init__(self):
self.items = []
def isEmpty(self):
return self.items == []
def enqueue(self, item):
self.items.insert(0,item)
def dequeue(self):
return self.items.pop()
def size(self):
return len(self.items)
#
# adjGraph
#
# Created by Brad Miller on 2005-02-24.
# Copyright (c) 2005 Brad Miller, David Ranum, Luther College. All rights reserved.
#
import sys
import os
class Graph:
"""
An adjaciency representation of a graph.
Internally nodes are store in a dictionary with:
- Key: the key associated to the vertex
- Value: the Vertex object itself
"""
def __init__(self):
self.vertices = {}
self.numVertices = 0
self.time = 0
def addVertex(self,key):
self.numVertices = self.numVertices + 1
newVertex = Vertex(key)
self.vertices[key] = newVertex
return newVertex
def getVertex(self,n):
if n in self.vertices:
return self.vertices[n]
else:
return None
def __contains__(self,n):
return n in self.vertices
def addEdge(self,f,t,cost=0):
if f not in self.vertices:
nv = self.addVertex(f)
if t not in self.vertices:
nv = self.addVertex(t)
self.vertices[f].addNeighbor(self.vertices[t],cost)
def getVertices(self):
"""
Returns the list of keys stored in the internal dictionary
that holds the vertices.
"""
return list(self.vertices.keys())
def __iter__(self):
return iter(self.vertices.values())
def getTime(self):
return self.time
def incrementTime(self):
self.time = self.time + 1
def __repr__(self):
return '\n'.join(['%r' % self.vertices[v] for v in self.vertices])
class Vertex:
WHITE = 0
GRAY = 1
BLACK = 2
def __init__(self,num):
self.id = num
self.connectedTo = {}
self.color = Vertex.WHITE
self.dist = sys.maxsize
self.pred = None
self.disc = 0
self.fin = 0
def addNeighbor(self,nbr,weight=0):
self.connectedTo[nbr] = weight
def setColor(self,color):
self.color = color
def setDistance(self,d):
self.dist = d
def setPred(self,p):
self.pred = p
def setDiscovery(self,dtime):
self.disc = dtime
def setFinish(self,ftime):
self.fin = ftime
def getFinish(self):
return self.fin
def getDiscovery(self):
return self.disc
def getPred(self):
return self.pred
def getDistance(self):
return self.dist
def getColor(self):
return self.color
def getConnections(self):
return self.connectedTo.keys()
def getWeight(self,nbr):
return self.connectedTo[nbr]
def __str__(self):
return self.__repr__()
def __repr__(self):
result = str(self.id) + ":color " + str(self.color) + ":disc " + str(self.disc) + ":fin " + str(self.fin) + ":dist " + str(self.dist)
if self.pred:
result += " :pred \t[" + str(self.pred.getId())+ "]"
if len(self.connectedTo.keys()):
result += " Connections: " \
+ " ".join([("(%s,%3.2f)") % (v.getId(), self.connectedTo[v]) for v in self.connectedTo.keys()])
return result
def getId(self):
return self.id
def __eq__(self, other):
return self.id == other.id
def __hash__(self):
return id(self)
vertices = []
consumes = Graph()
is_consumed = Graph()
def createGraph(dependency_file):
with open('%s' % dependency_file, 'r') as f:
for line in f:
m = re.match('(\d+).*label=(\w+),.*tooltip=(\w+)', line)
if m:
vertices.append(Vertex(int(m.group(1))))
vertices[-1].label = m.group(2)
vertices[-1].tooltip = m.group(3)
m = re.match('(\d+) -> (\d+);', line)
if m:
consumes.addEdge(int(m.group(1)), int(m.group(2)))
is_consumed.addEdge(int(m.group(2)), int(m.group(1)))
def toDotOutput(root_label,
graph,
outputFormat,
append,
maxNodes,
exclude_from_node):
root_nodes = [v for v in vertices if v.label == root_label]
exclude_node = [v for v in vertices if v.label in exclude_from_node]
assert(len(root_nodes)<=1)
print("Generating the '%s' graph..." % append)
nodes = bfs(graph, graph.getVertex(root_nodes[0].getId()))
exclude_nodes = []
for exclude_root_node in exclude_node:
tmp = bfs(graph, graph.getVertex(exclude_root_node.getId()))
exclude_nodes.extend(tmp[1:])
with open('%s_%s.gv' % (root_label, append), 'w') as output:
used_nodes = []
output.write('digraph RECO { graph [label = "%s", labelloc=top];\n' % root_label)
for n in nodes:
if (maxNodes is not None and len(used_nodes) >= int(maxNodes)) or n in exclude_nodes:
continue
index = n.getId()
if index not in used_nodes:
used_nodes.append(index)
output.write('%d[label=%s, tooltip=%s];\n' % (index, vertices[index].label, vertices[index].tooltip))
for child in n.getConnections():
if child.getId() not in used_nodes:
if (len(exclude_from_node) != 0 and child in exclude_nodes):
continue
used_nodes.append(child.getId())
output.write('%d[label=%s, tooltip=%s];\n' % (child.getId(),
vertices[child.getId()].label,
vertices[child.getId()].tooltip))
output.write('%d -> %d;\n' % (n.getId(), child.getId()))
output.write('}\n')
print("Graph processed.")
(status, _) = commands.getstatusoutput('dot -Grankdir=LR -Gmindist=4.0 -Gsplines=ortho -v -T{outputFormat} {filename}_{append}.gv -o {filename}_{append}.{outputFormat}'.format(filename='%s' % root_label,
outputFormat=outputFormat,
append=append))
if status != 0:
print _
sys.exit(1)
print("Done.")
def searchAndPrintNode(dependency_file, label, outputFormat='pdf', maxNodes=None, exclude_from_node=[]):
createGraph(dependency_file)
toDotOutput(label, consumes, outputFormat, 'consumes', maxNodes, exclude_from_node)
toDotOutput(label, is_consumed, outputFormat, 'is_consumed_by', maxNodes, exclude_from_node)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Explore CMSSW FWK dependency graph.')
parser.add_argument('-f', '--filename',
default = None,
help = 'Dependency file to use to extract information.',
type = str,
required=True)
parser.add_argument('-l', '--label',
default = '',
help = 'Label of the python module to use as the main vertex of the Graph.',
type = str,
required=False)
parser.add_argument('-o', '--output',
default = 'pdf',
help = 'Output extension of the generated plots.',
type = str,
required=False)
parser.add_argument('-m', '--maxNodes',
default = None,
help = 'Maximum number of nodes to plot (using BFS exploration of the graph).',
type = str,
required=False)
parser.add_argument('--exclude_from_nodes',
nargs='*',
default = '',
help = 'List of python labels starting from which nodes will be pruned while exploring the graph.',
required=False,
type=str)
args = parser.parse_args()
print args
searchAndPrintNode(args.filename, args.label, args.output, args.maxNodes, args.exclude_from_nodes)
# fire.Fire(searchAndPrintNode)