-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
419 lines (355 loc) · 11.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
"""
Implementation of two path finding algorithms using A* and RRT.
Author: Ximu Zhang
Created Date: 04/23/2021
"""
# library
import numpy as np
import math
from matplotlib import pyplot as plt
import os
import random
import sys
class GridWorld:
def __init__(self, show_animation=False, save_fig=False):
self.show_animation = show_animation
self.save_fig = save_fig
# position of source and destination
self.x_source = 10
self.y_source = 10
self.x_dest = 50
self.y_dest = 50
# boundary and obstacle of the grid world
self.x_min, self.y_min = 0, 0
self.x_max, self.y_max = 60, 60
self.x_len = self.x_max - self.x_min
self.y_len = self.y_max - self.y_min
self.map = np.zeros((self.x_len + 1, self.y_len + 1), dtype=bool)
self.map[self.x_min, :] = True
self.map[self.x_max, :] = True
self.map[:, self.y_min] = True
self.map[:, self.y_max] = True
self.map[20, :40] = True
self.map[40, 21:] = True
def show_grid_world(self, fig_num=None, name=None):
plt.figure()
# plot boundary
m, n = self.map.shape
for i in range(m):
for j in range(n):
if self.map[i, j]:
plt.plot(i, j, '.k')
# plot source and destination
plt.plot(self.x_source, self.y_source, '+g')
plt.plot(self.x_dest, self.y_dest, 'xb')
# plt.plot()
plt.grid(True)
plt.axis('equal')
if self.save_fig:
if name is None:
plt.savefig('./gif/grid_world.jpg')
else:
if not os.path.exists('./gif/%s' % name):
os.makedirs('./gif/%s' % name)
plt.savefig('./gif/%s/%d.jpg' % (name, fig_num))
if not self.show_animation:
plt.show()
class AStarPathPlanner:
def __init__(self, world, show_animation=False, save_fig=False):
self.show_animation = show_animation
self.save_fig = save_fig
self.env = world
self.env.show_animation = self.show_animation
self.env.save_fig = self.save_fig
self.motion = self.get_motion()
self.path_x = None
self.path_y = None
self.fig_num = 0
class Node:
def __init__(self, x, y, g_cost, h_cost, parent_index):
self.x = x # index of grid
self.y = y # index of grid
self.g_cost = g_cost
self.h_cost = h_cost
self.f_cost = self.g_cost + self.h_cost
self.parent_index = parent_index
def __str__(self):
return str(self.x) + "," + str(self.y) + "," + str(self.g_cost) + "," + str(self.h_cost) + "," + str(
self.f_cost) + "," + str(self.parent_index)
@staticmethod
def get_motion():
# dx, dy, cost
motion = [[1, 0, 1],
[0, 1, 1],
[-1, 0, 1],
[0, -1, 1],
[-1, -1, math.sqrt(2)],
[-1, 1, math.sqrt(2)],
[1, -1, math.sqrt(2)],
[1, 1, math.sqrt(2)]]
return motion
def path_planning(self):
# source and destination positions
x_s = self.env.x_source
y_s = self.env.y_source
x_d = self.env.x_dest
y_d = self.env.y_dest
s_node = self.Node(x_s, y_s, 0.0, 0.0, -1)
d_node = self.Node(x_d, y_d, 0.0, 0.0, -1)
del x_s, y_s, x_d, y_d
# create open set and closed set
open_set, closed_set = dict(), dict()
open_set['%d,%d' % (s_node.x, s_node.y)] = s_node
# plot grid world
if self.show_animation:
self.env.show_grid_world(self.fig_num, 'a_star')
self.fig_num += 1
# loop
while True:
# if open set is empty, jump out
if len(open_set) == 0:
break
# return the node in the open set with the lowest f_cost
current_id = min(open_set, key=lambda o: open_set[o].f_cost)
current = open_set[current_id]
# remove current node from open set and add it to closed set
del open_set[current_id]
closed_set[current_id] = current
# plot current node in the grid world figure
if self.show_animation:
plt.plot(current.x, current.y, 'xc')
if self.save_fig:
plt.savefig('./gif/a_star/%d.jpg' % self.fig_num)
self.fig_num += 1
if len(closed_set.keys()) % 10 == 0:
plt.pause(0.001)
# if current node is the destination, break
if current.x == d_node.x and current.y == d_node.y:
d_node.parent_index = current.parent_index
d_node.f_cost = current.f_cost
break
# for each neighbor of the current node
for i, _ in enumerate(self.motion):
new_x = current.x + self.motion[i][0]
new_y = current.y + self.motion[i][1]
node = self.Node(new_x,
new_y,
current.g_cost + self.motion[i][2],
self.calc_heuristic(d_node, new_x, new_y),
current_id)
node_id = '%d,%d' % (node.x, node.y)
# if the node is not traversable or is in closed set, skip
# else add new node or compare with the existing one
if not self.is_traversable(node) or node_id in closed_set:
continue
else:
if node_id not in open_set:
open_set[node_id] = node
else:
if open_set[node_id].f_cost > node.f_cost:
open_set[node_id] = node
# generate the path
self.generate_path(d_node, closed_set)
# plot path
plt.plot(self.path_x, self.path_y, '-r')
if self.save_fig:
plt.savefig('./gif/a_star/%d.jpg' % self.fig_num)
plt.pause(0.001)
plt.show()
def calc_heuristic(self, dest, x_neig, y_neig):
x_dest = dest.x
y_dest = dest.y
x_delta = abs(x_neig - x_dest)
y_delta = abs(y_neig - y_dest)
if x_delta == y_delta:
d = math.hypot(x_delta, y_delta)
else:
delta_min = min(x_delta, y_delta)
d = abs(x_delta - y_delta) + math.hypot(delta_min, delta_min)
return d
def is_traversable(self, node):
if node.x < self.env.x_min or node.y < self.env.y_min or node.x > self.env.x_max or node.y > self.env.y_max:
# out of the grid world
return False
elif self.env.map[node.x, node.y]: # obstacle detect
return False
else:
return True
def generate_path(self, dest, closed_set):
x_path = [dest.x]
y_path = [dest.y]
parent_index = dest.parent_index
while parent_index != -1:
node = closed_set[parent_index]
x_path.append(node.x)
y_path.append(node.y)
parent_index = node.parent_index
self.path_x = x_path
self.path_y = y_path
class RapidlyExploringRandomTree:
def __init__(self, world, threshold=2, max_iter=200000, delta_dist=2, prob=0.5, show_animation=False,
save_fig=False):
self.show_animation = show_animation
self.save_fig = save_fig
self.env = world
self.env.show_animation = self.show_animation
self.env.save_fig = self.save_fig
self.threshold = threshold # distance to the destination for termination
self.max_iter = max_iter
self.delta_dist = delta_dist # incremental distance
self.prob = prob # used in random node generation
self.node_list = {}
self.s_node = None # source node
self.d_node = None # destination node
self.path_x = None
self.path_y = None
self.fig_num = 0
class Node:
def __init__(self, x, y, parent_id=None):
self.id = '%d,%d' % (x, y)
self.x = x # index of grid
self.y = y # index of grid
self.parent_id = parent_id
def __str__(self):
return self.id + ',' + str(self.x) + ',' + str(self.y) + ',' + str(self.parent_id)
def path_planning(self):
is_path_found = False
counter = 0 # initial counter
x_s = self.env.x_source
y_s = self.env.y_source
x_d = self.env.x_dest
y_d = self.env.y_dest
s_node = self.Node(x_s, y_s)
d_node = self.Node(x_d, y_d)
self.s_node = s_node
self.d_node = d_node
self.node_list['%d,%d' % (x_s, y_s)] = s_node
# plot grid world
if self.show_animation:
self.env.show_grid_world(self.fig_num, 'rrt')
self.fig_num += 1
while counter < self.max_iter:
counter += 1
rnd_node = self.generate_random_node() # generate random node
nearest = self.find_nearest_node(self.node_list, rnd_node) # find the nearest node in the tree
if self.calc_dist_to_dest(nearest) < self.threshold:
self.d_node.parent_id = nearest.id
is_path_found = True
break
new_node = self.extend_tree(nearest, rnd_node) # extend tree
if new_node is not None:
self.node_list[new_node.id] = new_node
# plot current node in the grid world figure
if self.show_animation:
plt.plot(new_node.x, new_node.y, 'xc')
if self.save_fig:
plt.savefig('./gif/rrt/%d.jpg' % self.fig_num)
self.fig_num += 1
if len(self.node_list) % 10 == 0:
plt.pause(0.001)
if not is_path_found: # check if path is found
print("RRT: Path is not found!")
sys.exit(-1)
# generate path
self.generate_path()
# plot path
plt.plot(self.path_x, self.path_y, '-r')
if self.save_fig:
plt.savefig('./gif/rrt/%d.jpg' % self.fig_num)
plt.pause(0.001)
plt.show()
def generate_random_node(self):
p = random.random()
if p < self.prob:
# randomly generate node position in the boundary
x = random.randint(self.env.x_min + 1, self.env.x_max - 1)
y = random.randint(self.env.y_min + 1, self.env.y_max - 1)
# if node exists, regenerate
while self.node_exist(x, y):
x = random.randint(self.env.x_min + 1, self.env.x_max - 1)
y = random.randint(self.env.y_min + 1, self.env.y_max - 1)
return self.Node(x, y)
else:
return self.d_node
@staticmethod
def find_nearest_node(rrt_tree, node):
nearest_node_id = None
min_dist = -1
for node_id in rrt_tree:
node_in_tree = rrt_tree[node_id]
if min_dist == -1: # init
nearest_node_id = node_in_tree.id
min_dist = math.hypot(node_in_tree.x - node.x, node_in_tree.y - node.y)
else:
temp_dist = math.hypot(node_in_tree.x - node.x, node_in_tree.y - node.y)
if temp_dist < min_dist:
min_dist = temp_dist
nearest_node_id = node_in_tree.id
return rrt_tree[nearest_node_id]
def calc_dist_to_dest(self, node):
return math.hypot(node.x - self.d_node.x, node.y - self.d_node.y)
def extend_tree(self, nearest_node, rnd_node):
new_node = None
# calculate new node's position
gain = self.delta_dist / math.hypot(nearest_node.x - rnd_node.x, nearest_node.y - rnd_node.y)
x_new = round(nearest_node.x + gain * (rnd_node.x - nearest_node.x))
y_new = round(nearest_node.y + gain * (rnd_node.y - nearest_node.y))
if self.is_out_of_boundary(x_new, y_new) or self.node_exist(x_new, y_new): # in the grid world or node exists
return new_node
if not self.detect_obstacle(x_new, y_new, nearest_node):
new_node = self.Node(x_new, y_new, parent_id=nearest_node.id)
return new_node
def generate_path(self):
x_path = [self.d_node.x]
y_path = [self.d_node.y]
parent_id = self.d_node.parent_id
while parent_id is not None:
node = self.node_list[parent_id]
x_path.append(node.x)
y_path.append(node.y)
parent_id = node.parent_id
self.path_x = x_path
self.path_y = y_path
def detect_obstacle(self, x_pos, y_pos, node):
if self.env.map[x_pos, y_pos]: # collision with obstacle
return True
else:
if (20 - node.x) * (20 - x_pos) < 0:
y = node.y + (y_pos - node.y) / (x_pos - node.x) * (20 - node.x)
if y < 40:
return True
if (40 - node.x) * (40 - x_pos) < 0:
y = node.y + (y_pos - node.y) / (x_pos - node.x) * (40 - node.x)
if y > 20:
return True
return False
def node_exist(self, x_pos, y_pos):
if '%d,%d' % (x_pos, y_pos) in self.node_list.keys():
return True
else:
return False
def is_out_of_boundary(self, x_pos, y_pos):
if x_pos < self.env.x_min or y_pos < self.env.y_min or x_pos > self.env.x_max or y_pos > self.env.y_max:
return True
else:
return False
if __name__ == '__main__':
# anim = True # show animation
grid_world = GridWorld() # create grid world
# A star
a_star = AStarPathPlanner(grid_world, show_animation=True, save_fig=False)
a_star.path_planning()
# RRT
rrt = RapidlyExploringRandomTree(world=grid_world, threshold=2, max_iter=200000, delta_dist=2, prob=0.5,
show_animation=True, save_fig=False)
rrt.path_planning()
# comparison
grid_world.show_animation = True
grid_world.save_fig = False
grid_world.show_grid_world()
plt.plot(a_star.path_x, a_star.path_y, '-', label='A*')
plt.plot(rrt.path_x, rrt.path_y, '-', label="RRT")
plt.legend()
plt.grid(True)
plt.title("Comparison of Path Finding Results")
plt.show()