-
Notifications
You must be signed in to change notification settings - Fork 174
/
Copy pathtrain.py
98 lines (83 loc) · 4.13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from os import path
from os.path import join
from scipy.misc import imresize
from utils.preprocessing import data_generator_s31
from utils.callbacks import callbacks
from keras.models import load_model
import layers_builder as layers
import numpy as np
import argparse
import os
def set_npy_weights(weights_path, model):
npy_weights_path = join("weights", "npy", weights_path + ".npy")
json_path = join("weights", "keras", weights_path + ".json")
h5_path = join("weights", "keras", weights_path + ".h5")
print("Importing weights from %s" % npy_weights_path)
weights = np.load(npy_weights_path).item()
for layer in model.layers:
print(layer.name)
if layer.name[:4] == 'conv' and layer.name[-2:] == 'bn':
mean = weights[layer.name]['mean'].reshape(-1)
variance = weights[layer.name]['variance'].reshape(-1)
scale = weights[layer.name]['scale'].reshape(-1)
offset = weights[layer.name]['offset'].reshape(-1)
self.model.get_layer(layer.name).set_weights(
[scale, offset, mean, variance])
elif layer.name[:4] == 'conv' and not layer.name[-4:] == 'relu':
try:
weight = weights[layer.name]['weights']
model.get_layer(layer.name).set_weights([weight])
except Exception as err:
try:
biases = weights[layer.name]['biases']
model.get_layer(layer.name).set_weights([weight,
biases])
except Exception as err2:
print(err2)
if layer.name == 'activation_52':
break
def train(datadir, logdir, input_size, nb_classes, resnet_layers, batchsize, weights, initial_epoch, pre_trained, sep):
if args.weights:
model = load_model(weights)
else:
model = layers.build_pspnet(nb_classes=nb_classes,
resnet_layers=resnet_layers,
input_shape=input_size)
set_npy_weights(pre_trained, model)
dataset_len = len(os.listdir(os.path.join(datadir, 'imgs')))
train_generator, val_generator = data_generator_s31(
datadir=datadir, batch_size=batchsize, input_size=input_size, nb_classes=nb_classes, separator=sep)
model.fit_generator(
generator=train_generator,
epochs=100000, verbose=True, steps_per_epoch=500,
callbacks=callbacks(logdir), initial_epoch=initial_epoch)
class PSPNet(object):
"""Pyramid Scene Parsing Network by Hengshuang Zhao et al 2017"""
def __init__(self, nb_classes, resnet_layers, input_shape):
self.input_shape = input_shape
self.model = layers.build_pspnet(nb_classes=nb_classes,
layers=resnet_layers,
input_shape=self.input_shape)
print("Load pre-trained weights")
self.model.load_weights("weights/keras/pspnet101_voc2012.h5")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--input_dim', type=int, default=473)
parser.add_argument('--classes', type=int, default=2)
parser.add_argument('--resnet_layers', type=int, default=50)
parser.add_argument('--batch', type=int, default=2)
parser.add_argument('--datadir', type=str, required=True)
parser.add_argument('--logdir', type=str)
parser.add_argument('--weights', type=str, default=None)
parser.add_argument('--initial_epoch', type=int, default=0)
parser.add_argument('-m', '--model', type=str, default='pspnet50_ade20k',
help='Model/Weights to use',
choices=['pspnet50_ade20k',
'pspnet101_cityscapes',
'pspnet101_voc2012'])
parser.add_argument('--gpu', type=int, default=0)
parser.add_argument('--sep', default=').')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
train(args.datadir, args.logdir, (640, 480), args.classes, args.resnet_layers,
args.batch, args.weights, args.initial_epoch, args.model, args.sep)