-
Notifications
You must be signed in to change notification settings - Fork 174
/
Copy pathweight_converter.py
55 lines (44 loc) · 1.49 KB
/
weight_converter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#!/usr/bin/env python
from __future__ import print_function
import sys
from os.path import splitext
import numpy as np
import caffe
# Not needed because Tensorflow and Caffe do convolution the same way
# Needed for conversion to Theano
def rot90(W):
for i in range(W.shape[0]):
for j in range(W.shape[1]):
W[i, j] = np.rot90(W[i, j], 2)
return W
weights = {}
assert "prototxt" in splitext(
sys.argv[1])[1], "First argument must be caffe prototxt %s" % sys.argv[1]
assert "caffemodel" in splitext(
sys.argv[2])[1], "Second argument must be caffe weights %s" % sys.argv[2]
net = caffe.Net(sys.argv[1], sys.argv[2], caffe.TEST)
for k, v in net.params.items():
print("Layer %s, has %d params." % (k, len(v)))
if len(v) == 1:
W = v[0].data[...]
W = np.transpose(W, (2, 3, 1, 0))
weights[k] = {"weights": W}
elif len(v) == 2:
W = v[0].data[...]
W = np.transpose(W, (2, 3, 1, 0))
b = v[1].data[...]
weights[k] = {"weights": W, "biases": b}
elif len(v) == 4: # Batchnorm layer
k = k.replace('/', '_')
scale = v[0].data[...]
offset = v[1].data[...]
mean = v[2].data[...]
variance = v[3].data[...]
weights[k] = {"mean": mean, "variance": variance,
"scale": scale, "offset": offset}
else:
print("Undefined layer")
exit()
arr = np.asarray(weights)
weights_name = splitext(sys.argv[2])[0] + ".npy"
np.save(weights_name.lower(), arr)