-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathData.cpp
312 lines (286 loc) · 10.6 KB
/
Data.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#include "Data.h"
vector<vector<U64>> CONNECTIONS = vector<vector<U64>>(64, vector<U64>(64, 0x0));
vector<vector<U64>> magicRookMoveDatabase = vector<vector<U64>>(64, vector<U64>());
vector<vector<U64>> magicBishopMoveDatabase = vector<vector<U64>>(64, vector<U64>());
void genChessData::genMoveData()
{
genConnections();
genMagicDatabases();
}
void genChessData::genMagicDatabases()
{
// Generate variations
auto rookOccVariations = genOccupancyVariations(rookAttackMasks);
auto bishopOccVariations = genOccupancyVariations(bishopAttackMasks);
auto rookAttackSets = genCorrectAttackSets(rookOccVariations, true);
auto bishAttackSets = genCorrectAttackSets(bishopOccVariations, false);
// Initialize databases
for (int m = 0; m < 64; ++m) {
magicRookMoveDatabase[m] = vector<U64>(rookOccVariations[m].size(), 0x0);
magicBishopMoveDatabase[m] = vector<U64>(bishopOccVariations[m].size(), 0x0);
}
// Calculate databases for rooks
U64 magicIndex = 0;
for (int sq = 0; sq < 64; ++sq) {
for (int i = 0; i < rookOccVariations[sq].size(); ++i) {
magicIndex = (rookOccVariations[sq][i] * rookMagics[sq]) >> rookMagicShifts[sq];
magicRookMoveDatabase[sq][magicIndex] = rookAttackSets[sq][i];
}
}
// Calculate databases for bishops
for (int sq = 0; sq < 64; ++sq) {
for (int i = 0; i < bishopOccVariations[sq].size(); ++i) {
magicIndex = (bishopOccVariations[sq][i] * bishopMagics[sq]) >> bishopMagicShifts[sq];
magicBishopMoveDatabase[sq][magicIndex] = bishAttackSets[sq][i];
}
}
}
void genChessData::genConnections()
{
//cout << "Generating Bitboards...\n";
// Generate rectangular rays
vector<U64> rects(64, 0x0);
for(int i = 0; i < 64; i++)
rects[i] |= (_col << (i % 8)) ^ (_row << (i / 8) * 8);
// Generate Diagnoal rays
vector<U64> diags(64, 0x0);
for(int i = 0; i < 64; i++){
for(int j = 1; j < 8 - i % 8; j++)
diags[i] |= (0x1ull << i) << j * 9;
for(int j = 1; j < i % 8 + 1; j++)
diags[i] |= (0x1ull << i) << j * 7;
for(int j = 1; j < i % 8 + 1; j++)
diags[i] |= (0x1ull << i) >> j * 9;
for(int j = 1; j < 8 - i % 8; j++)
diags[i] |= (0x1ull << i) >> j * 7;
}
U64 temp = 0x0;
for(int i = 0; i < 64; i++){
for(int j = 0; j < 64; j++){
if(rects[j] & bit_at(i)){
if(abs(i-j) < 8 && abs(i-j) > 1) // Pieces on same rank
CONNECTIONS[i][j] = i < j ? (bit_at(j) - bit_at(i))^bit_at(i) : (bit_at(i) - bit_at(j))^bit_at(j);
else if (j > i && j - i > 8){
temp = bit_at(j) >> 8;
while(!(temp & bit_at(i)))
temp |= temp >> 8;
CONNECTIONS[i][j] = temp ^ (bit_at(i));
}
else if (j < i && i - j > 8){
temp = bit_at(j) << 8;
while(!(temp & bit_at(i)))
temp |= temp << 8;
CONNECTIONS[i][j] = temp ^ (bit_at(i));
}
}
else if(diags[j] & bit_at(i)){
if(j / 8 > i / 8){
if(j % 8 > i % 8 && j - i > 9){ // j above left of i
temp = bit_at(j) >> 9;
while(!(temp & bit_at(i)))
temp |= temp >> 9;
CONNECTIONS[i][j] = temp ^ (bit_at(i));
}
else if(j % 8 < i % 8 && j - i > 9){ // j above right of i
temp = bit_at(j) >> 7;
while(!(temp & bit_at(i)))
temp |= temp >> 7;
CONNECTIONS[i][j] = temp ^ (bit_at(i));
}
}
else{
if(j % 8 > i % 8 && i - j > 9){ // j below left of i
temp = bit_at(j) << 7;
while(!(temp & bit_at(i)))
temp |= temp << 7;
CONNECTIONS[i][j] = temp ^ (bit_at(i));
}
else if(j % 8 < i % 8 && i - j > 9){ // j below right of i
temp = bit_at(j) << 9;
while(!(temp & bit_at(i)))
temp |= temp << 9;
CONNECTIONS[i][j] = temp ^ (bit_at(i));
}
}
}
}
}
}
pair<vector<U64>, vector<U64>> genChessData::genEffectiveAttacks()
{
auto localRookAttackMask = vector<U64>(64, 0);
auto localBishopAttackMask = vector<U64>(BISHOP_ATTACKS.begin(), BISHOP_ATTACKS.end());
// Generate relevant bishop masks:
for (auto& ba : localBishopAttackMask) ba &= ~0xFF818181818181FFULL;
// Generate relevant rook masks:
for (int i = 0; i < 64; ++i) {
localRookAttackMask[i] = (_right << (i % 8)) ^ (0xFFULL << ((i / 8) * 8));
if (i % 8 != 0 && i % 8 != 7 && i / 8 != 0 && i / 8 != 7) {
localRookAttackMask[i] &= ~0xFF818181818181FFULL;
}
else if (i / 8 == 0) { // first rank
localRookAttackMask[i] &= ~0xFF00000000000000ULL;
if (i % 8 == 0) { localRookAttackMask[i] &= ~0x80808080808080ULL; }
else if (i % 8 == 7) { localRookAttackMask[i] &= ~0x01010101010101ULL; }
else { localRookAttackMask[i] &= ~0x81818181818181ULL; }
}
else if (i / 8 == 7) { // last rank
localRookAttackMask[i] &= ~0xFFULL;
if (i % 8 == 0) { localRookAttackMask[i] &= ~0x8080808080808080ULL; }
else if (i % 8 == 7) { localRookAttackMask[i] &= ~0x0101010101010101ULL; }
else { localRookAttackMask[i] &= ~0x8181818181818181ULL; }
}
else if (i % 8 == 0) { localRookAttackMask[i] &= ~0xFF808080808080FFULL; }
else if (i % 8 == 7) { localRookAttackMask[i] &= ~0xFF010101010101FFULL; }
}
return pair<vector<U64>, vector<U64>>(localRookAttackMask, localBishopAttackMask);
}
void genChessData::genMagic()
{
// The following code is never executed at runtime
auto att = genEffectiveAttacks();
auto localRookAttackMask = att.first;
auto localBishopAttackMask = att.second;
// Generate variations of occupancies since
// many occupation variants correspond to the same attack set
auto rookOccVariations = genOccupancyVariations(localRookAttackMask);
auto bishopOccVariations = genOccupancyVariations(localBishopAttackMask);
auto rookAttackSets = genCorrectAttackSets(rookOccVariations, true);
auto bishAttackSets = genCorrectAttackSets(bishopOccVariations, false);
auto rookShifts = vector<U64>();
auto bishShifts = vector<U64>();
// Determine magic numbers by brute force:
cout << "Rook Magics:\n" << string(80,'~') << endl;
auto rookMagic = generateMagicBitboards(rookOccVariations, rookAttackSets, localRookAttackMask);
cout << "Bishop Magics:\n" << string(80, '~') << endl;
auto bishopMagic = generateMagicBitboards(bishopOccVariations, bishAttackSets, localBishopAttackMask);
cout << "Rook Shifts: \n" << string(80, '~') << endl;
for (auto& r : localRookAttackMask) {
cout << dec << (int)(64 - popcount(r)) << endl;
}
cout << "Bishop Shifts: \n" << string(80, '~') << endl;
for (auto& r : localBishopAttackMask) {
cout << dec << (int)(64 - popcount(r)) << endl;
}
cin.ignore();
}
vector<vector<U64>> genChessData::genCorrectAttackSets(vector<vector<U64>>& vars, bool isrook)
{
// The following code is never executed at runtime
U64 temp = 0;
auto correctAttackSets = vector<vector<U64>>(64, vector<U64>());
if (isrook) {
for (int sq = 0; sq < 64; ++sq) {
for (int i = 0; i < vars[sq].size(); ++i) {
temp = 0;
temp |= floodFill(bit_at(sq), ~vars[sq][i], 0);
temp |= floodFill(bit_at(sq), ~vars[sq][i], 1);
temp |= floodFill(bit_at(sq), ~vars[sq][i], 2);
temp |= floodFill(bit_at(sq), ~vars[sq][i], 3);
correctAttackSets[sq].push_back(temp);
}
}
}
else {
for (int sq = 0; sq < 64; ++sq) {
for (int i = 0; i < vars[sq].size(); ++i) {
temp = 0;
temp |= floodFill(bit_at(sq), ~vars[sq][i], 4);
temp |= floodFill(bit_at(sq), ~vars[sq][i], 5);
temp |= floodFill(bit_at(sq), ~vars[sq][i], 6);
temp |= floodFill(bit_at(sq), ~vars[sq][i], 7);
correctAttackSets[sq].push_back(temp);
}
}
}
return correctAttackSets;
}
U64 genChessData::floodFill(U64 propagator, U64 empty, int direction) const
{
// The following code is never executed at runtime
U64 flood = propagator;
U64 wrap = noWrap[direction];
empty &= wrap;
auto r_shift = shift[direction];
flood |= propagator = rotate_l64(propagator, r_shift) & empty;
flood |= propagator = rotate_l64(propagator, r_shift) & empty;
flood |= propagator = rotate_l64(propagator, r_shift) & empty;
flood |= propagator = rotate_l64(propagator, r_shift) & empty;
flood |= propagator = rotate_l64(propagator, r_shift) & empty;
flood |= rotate_l64(propagator, r_shift) & empty;
return rotate_l64(flood, r_shift) & wrap;
}
vector<U64> genChessData::generateMagicBitboards(vector<vector<U64>>& vars, vector<vector<U64>>& correctAttacks, vector<U64>& masks)
{
// The following code is never executed at runtime
// Generates Magic numbers
random_device r_device;
mt19937_64 generator(r_device());
generator.seed(42);
uniform_int_distribution<U64> distr;
vector<U64> finalMagicNumbers;
bool fail = true;
U64 magicNumber = 0x0;
vector<U64> testHash; // For testing the mapping of the calculated magic numbers
for (int sq = 0; sq < 64; sq++) {
while(fail){
// Generate random number with few set bits
magicNumber = distr(generator) & distr(generator) & distr(generator);
testHash = vector<U64>(correctAttacks[sq].size(), 0x0);
fail = false;
for (int i = 0; i < vars[sq].size() && !fail; ++i) {
U64 magicIndex = (vars[sq][i] * magicNumber) >> (64 - popcount(masks[sq]));
//printBitboard(magicIndex);
// Check if magicIndex maps to wrong attack set
fail = testHash[magicIndex] != 0 && testHash[magicIndex] != correctAttacks[sq][i];
testHash[magicIndex] = correctAttacks[sq][i];
}
}
fail = true;
// Magic number was found!
finalMagicNumbers.push_back(magicNumber);
cout << "0x" << hex << magicNumber << ",\n";
}
return finalMagicNumbers;
}
vector<vector<U64>> genChessData::genOccupancyVariations(vector<U64> occupancy)
{
// The following code is never executed at runtime
vector<vector<U64>> variations = vector<vector<U64>>(64, vector<U64>(1, 0x0));
vector<int> bitIndex;
uint counter = 0;
uint squareCount = 0;
U64 temp = 0;
for (auto& occ : occupancy){
// Generate bit indexing
//printBitboard(occ);
bitIndex.clear();
for_bits(pos, occ) { bitIndex.push_back(pos); }
uint maxCount = (0xFFFFFF >> (24 - bitIndex.size())) + 1;
for (counter = 1; counter <= maxCount; ++counter) {
// Map bits to a variation according to bitIndex
temp = 0;
//printBits(counter);
for (uint r = 0x1, c = 0; c < bitIndex.size(); r <<= 1, c++) {
if (r & counter) {
temp |= 0x1ULL << (bitIndex[c]);
}
}
if(temp) variations[squareCount].push_back(temp);
}
squareCount++;
}
return variations;
}
/*
void knight(vector<uint64>& nums)
{
for (int i = 0; i < 64; i++) {
nums[i] |= i < 20 ? (uint64)0xA1100110A << i >> 18 : (uint64)0xA1100110A << (i - 18);
if (i % 8 < 3)
nums[i] ^= nums[i] & _left;
else if (i % 8 > 5)
nums[i] ^= nums[i] & _right;
}
}
*/