-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPATHOGIST
executable file
·865 lines (778 loc) · 42.1 KB
/
PATHOGIST
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
#!/usr/bin/env python3
import os
import sys
import subprocess
import resource
import argparse
import logging
import numpy
import itertools
import re
import collections
import pkg_resources
import shutil
import yaml
import urllib.request as urllib
from multiprocessing import Process
import pathogist
import pathogist.cluster
import pathogist.io
import pathogist.distance
import pathogist.visualize
logger = logging.getLogger()
def multi_process_spotyping(install_path, spotyping_options, spotyping_flags, accession, forward_reads, reverse_reads, temp_dir):
# Set up the spotyping command
spotyping_command = ['python', install_path +'/SpoTyping.py',
'--outdir', temp_dir,
'--output', '%s_spotyping.call' % accession,
]
# Add the user specified options for the SpoTyping command
try:
for arg in spotyping_options:
spotyping_command.extend(['--%s' % arg, spotyping_options[arg]])
except:
pass
try:
for arg in spotyping_flags:
spotyping_command.append('--%s' % arg)
except:
pass
# Specify the path the to the forward reads of the sample for spotyping
if forward_reads[accession].endswith(".gz") == False:
spotyping_command.append(forward_reads[accession])
spotyping_command.append(reverse_reads[accession])
else:
subprocess.call(['cp', '-L', forward_reads[accession], temp_dir] )
subprocess.call(['cp', '-L', reverse_reads[accession], temp_dir] )
for_unzipped = forward_reads[accession].split('/')[-1].split('.gz')[0]
rev_unzipped = reverse_reads[accession].split('/')[-1].split('.gz')[0]
for_zipped = forward_reads[accession].split('/')[-1]
rev_zipped = reverse_reads[accession].split('/')[-1]
subprocess.call(['gunzip', '-f', temp_dir + '/' + for_zipped] )
subprocess.call(['gunzip', '-f', temp_dir + '/' + rev_zipped] )
spotyping_command.append(temp_dir + '/' + for_unzipped)
spotyping_command.append(temp_dir + '/' + rev_unzipped)
logger.info(" Running SpoTyping on accession %s" % accession)
#print(spotyping_command)
#sys.exit(1)
subprocess.call(spotyping_command)
subprocess.call(['rm', temp_dir + '/' + for_unzipped] )
subprocess.call(['rm', temp_dir + '/' + rev_unzipped] )
logger.info(" Finished running SpoTyping on accession %s" % accession)
def read_genotyping_calls(genotype,calls_path,clustering_args):
read_calls_functions = {'SNP': pathogist.io.read_snp_calls,
'MLST': pathogist.io.read_mlst_calls,
'CNV': pathogist.io.read_cnv_calls,
'spoligotyping': pathogist.io.read_spotype_calls,
}
assert(genotype in read_calls_functions.keys()),\
"Error: genotype datatype %s not supported." % genotype
bed_path = clustering_args['genotyping_options']['bed_filter']
if bed_path != None and genotype == 'SNP':
return read_calls_functions[genotype](calls_path, bed_path=bed_path)
else:
return read_calls_functions[genotype](calls_path)
def create_genotype_distance_matrix(genotype,calls):
create_distance_functions = {'SNP': pathogist.distance.create_snp_distance_matrix,
'MLST': pathogist.distance.create_mlst_distance_matrix,
'CNV': pathogist.distance.create_cnv_distance_matrix,
'spoligotyping': pathogist.distance.create_spotype_distance_matrix,
}
assert(genotype in create_distance_functions.keys()),\
"Error: genotype datatype %s not supported." % genotype
return create_distance_functions[genotype](calls)
def run_snippy_on_sample(snippy_command,sample,outdir):
subprocess.run(snippy_command)
# filter vcf to obtain only entries with non complex variants
with open( outdir+"/snps.vcf" ) as f: # non_complex_vcf input
with open( outdir+"/non_complex_snps.vcf", 'w') as g: # non_complex_vcf_output
for line in f:
entries = line.rstrip().split('\t')
if len(entries) == 1: # keep header of vcf file
g.write(line)
else:
# keep entries with only same length ref(3) and alt(4) alleles
if len(entries[3]) == len(entries[4]):
g.write(line)
primitive_vcf = open( outdir+"/snps.primitive.vcf", "w")
subprocess.run(["vcfallelicprimitives", "-kg", outdir+"/non_complex_snps.vcf" ],
stdout = primitive_vcf)
primitive_tab = open(outdir+"/snps.primitive.tab", "w")
#append sample to beginning of primitive_tab
primitive_tab.write(sample+"\n")
primitive_tab = open(outdir+"/snps.primitive.tab", "a")
#append rest of the tab file to primitive_tab
subprocess.run(["snippy-vcf_to_tab",
"--gff",
outdir + "/reference/ref.gff",
"--ref",
outdir + "/reference/ref.fa",
"--vcf",
outdir+"/snps.primitive.vcf"],
stdout = primitive_tab)
# return the path to tab file used for pathogist distance function
return outdir+"/snps.primitive.tab"
def run_snippy(snippy_args,forward_reads_paths,reverse_reads_paths,threads,temp_dir):
accessions = set(forward_reads_paths.keys()).union(reverse_reads_paths.keys())
snippy_options = snippy_args['options']
snippy_flags = snippy_args['flags']
snippy_calls_paths = []
for accession in accessions:
# Get the paths to the reads
forward_reads_path = forward_reads_paths[accession]
reverse_reads_path = reverse_reads_paths[accession]
# Start building the snippy command
snippy_command = ['snippy']
# Output directory for snippy
outdir = '%s/%s' % (temp_dir,accession)
snippy_command.extend(['--outdir', outdir])
# Output prefix for snippy
snippy_command.extend(['--prefix', 'snps'])
# Specify the paths to the forward and reverse reads for snippy
snippy_command.extend(['--pe1', forward_reads_path])
snippy_command.extend(['--pe2', reverse_reads_path])
snippy_command.extend(['--cpus', str(threads)])
# Force overwriting of existing output folder by default
snippy_command.append('--force')
# Add other user specified command line arguments
try:
for arg in snippy_options:
snippy_command.extend(['--%s' % arg, str(snippy_options[arg])])
except:
pass
try:
for arg in snippy_flags:
snippy_command.append('--%s' % arg)
except:
pass
logger.info(" Running Snippy on sample %s..." % accession)
# Create the output directory first
subprocess.run(['mkdir','-p',outdir])
snippy_call = run_snippy_on_sample(snippy_command,accession,outdir)
snippy_calls_paths.append(snippy_call)
logger.info(" Finished running Snippy on sample %s." % accession)
logger.info(" Finished running Snippy.")
return snippy_calls_paths
def install_spotyping():
install_path = os.environ['PATH'].split(os.pathsep)[0]
if os.path.isfile(install_path + '/ref/spacer.fasta') == False:
subprocess.call(['wget', '-q', '-x', '-P', install_path + '/ref/',
'https://raw.githubusercontent.com/matnguyen/SpoTyping/master/SpoTyping-v3.0-commandLine/ref/spacer.fasta'])
subprocess.call(['cp', install_path +
'/ref/raw.githubusercontent.com/matnguyen/SpoTyping/master/SpoTyping-v3.0-commandLine/ref/spacer.fasta',
install_path + '/ref/'])
def install_mentalist():
install_path = os.environ['PATH'].split(os.pathsep)[0]
julia_dir=install_path+"/julia_mentalist"
if os.path.isfile(julia_dir + '/julia-1.1.0/bin/julia') == False:
subprocess.call(['wget', '-q', '-x', '-P', julia_dir,
'https://julialang-s3.julialang.org/bin/linux/x64/1.1/julia-1.1.0-linux-x86_64.tar.gz'])
subprocess.call(['tar', '-C', julia_dir, '-xzf',
julia_dir+'/julialang-s3.julialang.org/bin/linux/x64/1.1/julia-1.1.0-linux-x86_64.tar.gz'])
for pkg in ["Distributed", "ArgParse", "BioSequences", "JSON", "DataStructures", "JLD", "GZip",
"Blosc", "FileIO", "TextWrap", "LightXML"]: #"JuMP", "Gurobi"]
julia_command = julia_dir + '/julia-1.1.0/bin/julia'+' -e \'import Pkg; Pkg.add("%s")\'' % (pkg)
subprocess.call(julia_command, shell=True)
#pkg = '[ "Distributed", "ArgParse", "BioSequences", "JSON", "DataStructures", "JLD", "GZip", "Blosc", "FileIO", "TextWrap", "LightXML"]'
#julia_command = julia_dir + '/julia-1.1.0/bin/julia'+' -e \'import Pkg; Pkg.add("%s")\'' % (pkg)
#subprocess.call(julia_command, shell=True)
if os.path.isfile(julia_dir + '/MentaLiST-65451e7/src/MentaLiST.jl') == False:
subprocess.call(['wget', '-q', '-x', '-P', julia_dir,
'https://github.com/WGS-TB/MentaLiST/archive/65451e7.zip'])
subprocess.call(['unzip',
julia_dir+'/github.com/WGS-TB/MentaLiST/archive/65451e7.zip', '-d', julia_dir])
subprocess.call(['mv',
julia_dir+'/MentaLiST-65451e7*', julia_dir+'/MentaLiST-65451e7'])
def run_mentalist(mentalist_args,forward_reads_paths,reverse_reads_paths,threads,temp_dir):
# Get the accessions
accessions = set(forward_reads_paths.keys()).union(reverse_reads_paths.keys())
logger.info("Running MentaLiST...")
if mentalist_args['db_loc']['local_file'] == 1:
return run_mentalist_call(mentalist_args, forward_reads_paths, reverse_reads_paths, temp_dir, accessions, threads, mentalist_args['local_file']['database'])
install_path = os.environ['PATH'].split(os.pathsep)[0]
julia_dir=install_path+"/julia_mentalist"
# Run any one of the database building mentalist subcommands
db_path = "%s/mlst.db" % temp_dir
for subcmd in ['build_db','download_pubmlst','download_cgmlst','download_enterobase']:
if mentalist_args['db_loc'][subcmd] == 1:
subcmd_options = mentalist_args[subcmd]['options']
mentalist_command = [julia_dir + '/julia-1.1.0/bin/julia',
julia_dir + '/MentaLiST-65451e7/src/MentaLiST.jl',
subcmd,
'--db','%s' % db_path,
'--threads','%s' % threads,
'--output', temp_dir + '/mlst_fasta/']
# Add user specified command line arguments
try:
for arg in subcmd_options:
if arg == 'k':
mentalist_command.append('-%s' % arg)
else:
mentalist_command.append('--%s' % arg)
mentalist_command.append('%s' % subcmd_options[arg])
except:
pass
if 'flags' in mentalist_args[subcmd]:
subcmd_flags = mentalist_args[subcmd]['flags']
try:
for arg in subcmd_flags:
mentalist_command.append('--%s' % arg)
except:
pass
logger.info("Constructing database with command '%s'..." % subcmd)
subprocess.call(mentalist_command)
logger.info("Finished constructing database.")
# Run the mentalist call subcommand
return run_mentalist_call(mentalist_args, forward_reads_paths, reverse_reads_paths, temp_dir, accessions, threads, db_path)
def run_mentalist_call(mentalist_args, forward_reads_paths, reverse_reads_paths, temp_dir, accessions, threads, db_path):
mentalist_calls_paths = [] # the paths to the MLST call files
install_path = os.environ['PATH'].split(os.pathsep)[0]
julia_dir=install_path+"/julia_mentalist"
for accession in accessions:
call_path = '%s/%s_mlst.call' % (temp_dir,accession)
mentalist_calls_paths.append(call_path)
call_command = [julia_dir + '/julia-1.1.0/bin/julia',
julia_dir + '/MentaLiST-65451e7/src/MentaLiST.jl',
'call']
call_command.extend(['--db', db_path])
call_command.extend(['-o', call_path])
# Add input reads path to mentalist call command
call_command.extend(['-1', forward_reads_paths[accession]])
call_command.extend(['-2', reverse_reads_paths[accession]])
call_options = mentalist_args['call']['options']
try:
for arg in call_options:
call_command.extend(['--%s' % arg, str(call_options[arg])])
except:
pass
call_flags = mentalist_args['call']['flags']
try:
for arg in call_flags:
call_command.append('--%s' % call_flags[arg])
except:
pass
logger.info(" Calling MLSTs on samples %s using MentaLiST..." % accession)
#print(call_command)
subprocess.call(call_command)
logger.info(" Finished calling MLSTs on sample %s." % accession)
logger.info(" Finished running MentaLiST.")
return mentalist_calls_paths
def run_kwip(kwip_args,forward_reads_paths,reverse_reads_paths,threads,temp_dir):
accessions = set(forward_reads_paths.keys()).union(reverse_reads_paths.keys())
# the paths of the hashes output by khmer
hash_paths = []
logger.info(" Building k-mer countgraphs using khmer...")
for accession in accessions:
khmer_command = ['load-into-counting.py', '--threads', str(threads), '--force', '-b']
khmer_options = kwip_args['khmer_options']
try:
for arg in khmer_options:
if arg == "N" or arg == "x":
khmer_command.extend(['-%s' % arg, str(khmer_options[arg])])
else:
khmer_command.extend(['--%s' % arg, str(khmer_options[arg])])
except:
pass
# Specify the output path for the hash
hash_path = '%s/%s.ct.gz' % (temp_dir,accession)
hash_paths.append(hash_path)
khmer_command.append(hash_path)
# Specify the paths to the forward and reverse reads
khmer_command.append(forward_reads_paths[accession])
khmer_command.append(reverse_reads_paths[accession])
logger.info(" Building k-mer countgraph for sample %s" % accession)
subprocess.call(khmer_command)
logger.info(" Finished building k-mer countgraph for sample %s" % accession)
logger.info(" Finished building k-mer countgraphs for all samples.")
kwip_command = ['kwip']
kwip_options = kwip_args['kwip_options']
# Add the user specified options for kwip
try:
for arg in kwip_options:
kwip_command.extend(['--%s' % arg,kwip_options[arg]])
except:
pass
# Add the user specified flags for kwip
kwip_flags = kwip_args['kwip_flags']
try:
for arg in kwip_flags:
kwip_command.append('--%s' % arg)
except:
pass
# Add the distance output path
kwip_dist_path = '%s/kwip_dist.tsv' % temp_dir
kwip_command.extend(['-d', kwip_dist_path])
kwip_command.extend(['-t', str(threads)])
# Specify the paths to the khmer hashes to kwip
for hash_path in hash_paths:
kwip_command.append(hash_path)
logger.info(kwip_command)
logger.info(" Running kWIP...")
subprocess.call(kwip_command)
logger.info(" Finished running kWIP.")
return kwip_dist_path
def run_prince(prince_args,combined_reads_list_path,threads,temp_dir):
prince_options = prince_args['options']
calls_path = '%s/CNV.calls' % (temp_dir)
prince_command = ['prince', '-tf', combined_reads_list_path, '-to', calls_path]
try:
for arg in prince_options:
prince_command.extend(['--%s' % arg, prince_options[arg]])
except:
pass
prince_command.extend(['-np', str(threads)])
logger.info(" Finding CNVs using PRINCE...")
subprocess.call(prince_command)
logger.info(" Finished running PRINCE.")
path_of_calls_path = '%s/prince_calls.txt' % (temp_dir)
f = open(path_of_calls_path, "w")
f.write(calls_path + "\n")
f.close()
return path_of_calls_path
def run_spotyping(spotyping_args, forward_reads,reverse_reads, threads, temp_dir):
accessions = set(forward_reads.keys()).union(reverse_reads.keys())
spotyping_options = spotyping_args['options']
#spotyping_path = spotyping_args['path']
install_path = os.environ['PATH'].split(os.pathsep)[0]
# Add the user specified flags for the SpoTyping command
spotyping_flags = spotyping_args['flags']
spoligo_calls_paths = []
logger.info(" Inferring spoligotyping using SpoTyping...")
procs = []
for accession in accessions:
calls_path = '%s/%s_spotyping.call' % (temp_dir,accession)
spoligo_calls_paths.append(calls_path)
# instantiating spotyping process
proc = Process(target=multi_process_spotyping, args=(install_path, spotyping_options, spotyping_flags, accession, forward_reads, reverse_reads, temp_dir,))
procs.append(proc)
proc.start()
if len(procs) == threads:
# complete the processes
for proc in procs:
proc.join()
procs = []
for proc in procs:
proc.join()
procs = []
logger.info(" Finished running SpoTyping.")
return spoligo_calls_paths
def combine_reads_lists(forward_reads_paths,reverse_reads_paths,temp_dir):
accessions = set(forward_reads_paths.keys()).union(reverse_reads_paths.keys())
# Combine the forward and reverse reads paths lists into a single file
combined_reads_list_path = '%s/combined_reads.txt' % temp_dir
with open(combined_reads_list_path,'w') as output:
for accession in accessions:
output.write('%s\t' % forward_reads_paths[accession])
output.write('%s\n' % reverse_reads_paths[accession])
return combined_reads_list_path
def get_reads_paths_from_list(forward_reads_list_path,reverse_reads_list_path):
forward_reads_paths = {}
reverse_reads_paths = {}
with open(forward_reads_list_path,'r') as forwards_file:
for line in forwards_file:
path = line.rstrip()
# basename of the FASTQ file
base = os.path.basename(path)
# remove '_1.fastq'
accession = os.path.splitext(base)[0].split('_')[0]
forward_reads_paths[accession] = path
with open(reverse_reads_list_path,'r') as reverse_file:
for line in reverse_file:
path = line.rstrip()
# basename of the FASTQ file
base = os.path.basename(path)
# remove '_2.fastq' from basename
accession = os.path.splitext(base)[0].split('_')[0]
reverse_reads_paths[accession] = path
return forward_reads_paths, reverse_reads_paths
def run_genotyping_tools(genotyping_args, run_args, threads, temp_dir):
denovo_calls_paths = {}
denovo_distances_paths = {}
run_genotyping = False
for tool in run_args:
if run_args[tool] == 1:
run_genotyping = True
if run_genotyping == False:
denovo_calls_dists_paths = {'distances': denovo_distances_paths,'calls': denovo_calls_paths}
return denovo_calls_dists_paths
forward_reads_list_path = genotyping_args['input_reads']['forward_reads']
reverse_reads_list_path = genotyping_args['input_reads']['reverse_reads']
forward_reads_paths,reverse_reads_paths = get_reads_paths_from_list(forward_reads_list_path,
reverse_reads_list_path)
pathogist.io.check_fastq_input(forward_reads_paths, reverse_reads_paths)
combined_reads_list_path = combine_reads_lists(forward_reads_paths,
reverse_reads_paths,
temp_dir)
if 'mentalist' in genotyping_args and run_args['mentalist'] == 1:
mentalist_args = genotyping_args['mentalist']
install_mentalist()
denovo_calls_paths['MLST'] = run_mentalist(mentalist_args,
forward_reads_paths,
reverse_reads_paths,
threads,
temp_dir)
if 'kwip' in genotyping_args and run_args['kwip'] == 1:
kwip_args = genotyping_args['kwip']
denovo_distances_paths['kWIP'] = run_kwip(kwip_args,
forward_reads_paths,
reverse_reads_paths,
threads,
temp_dir)
if 'prince' in genotyping_args and run_args['prince'] == 1:
prince_args = genotyping_args['prince']
denovo_calls_paths['CNV'] = run_prince(prince_args,
combined_reads_list_path,
threads,
temp_dir)
if 'snippy' in genotyping_args and run_args['snippy'] == 1:
snippy_args = genotyping_args['snippy']
denovo_calls_paths['SNP'] = run_snippy(snippy_args,
forward_reads_paths,
reverse_reads_paths,
threads,
temp_dir)
if 'spotyping' in genotyping_args and run_args['spotyping'] == 1:
spotyping_args = genotyping_args['spotyping']
install_spotyping()
denovo_calls_paths['spoligotyping'] = run_spotyping(spotyping_args,
forward_reads_paths,
reverse_reads_paths,
threads,
temp_dir)
#sys.exit() #end to test
denovo_calls_dists_paths = {'distances': denovo_distances_paths,'calls': denovo_calls_paths}
return denovo_calls_dists_paths
def call_clustering_commands(clustering_args,run_args,denovo_calls_dists_paths,threads,temp_dir):
# Make sure the configuration file is formatted correctly
if False not in [isinstance(clustering_args[section],dict) for section in clustering_args]:
distance_keys_set = set(clustering_args['distances'].keys())
genotyping_keys_set = set(clustering_args['genotyping'].keys())
threshold_keys_set = set(clustering_args['thresholds'].keys())
fine_clusterings_set = set(clustering_args['fine_clusterings'])
assert( (distance_keys_set & genotyping_keys_set) == set() ),\
"'distances' and 'genotyping' have a key in common."
assert( threshold_keys_set == (distance_keys_set | genotyping_keys_set) ),\
"Set of keys in thresholds not equal to the set of keys in genotyping and distances."
assert( fine_clusterings_set <= (distance_keys_set | genotyping_keys_set) ),\
"A value in 'fine_clusterings' does not appear in 'genotyping' or 'distances'."
denovo_calls_paths = denovo_calls_dists_paths['calls']
denovo_distances_paths = denovo_calls_dists_paths['distances']
# Get genotyping calls
logger.info(' Reading genotyping calls...')
calls = {}
if isinstance(clustering_args['genotyping'],dict):
for genotype in clustering_args['genotyping'].keys():
calls_path = clustering_args['genotyping'][genotype]
if calls_path != None:
calls[genotype] = read_genotyping_calls(genotype,calls_path,clustering_args)
for genotype in denovo_calls_paths:
calls[genotype] = read_genotyping_calls(genotype,denovo_calls_paths[genotype],clustering_args)
logger.info(' Finished reading genotyping calls.')
# Create distance matrices from calls
logger.info(' Creating distance matrices...')
distances = {}
for genotype in calls:
distance_matrix = create_genotype_distance_matrix(genotype, calls[genotype])
distances[genotype] = distance_matrix
if temp_dir is not None:
dist_output_path = temp_dir + ("/%s_distance_matrix.tsv" % genotype)
logger.info(" Saving %s distance matrix at %s..."
% (genotype,dist_output_path))
pathogist.io.write_distance_matrix(distance_matrix,dist_output_path)
logger.info(" Finished creating distance matrices.")
# Read pre-constructed distance matrices
logger.info(' Reading distance matrices...')
if isinstance(clustering_args['distances'],dict):
for genotype in clustering_args['distances'].keys():
if clustering_args['distances'][genotype] != None:
distance_matrix_path = clustering_args['distances'][genotype]
logger.info(distance_matrix_path)
distances[genotype] = pathogist.io.open_distance_file(distance_matrix_path)
for genotype in denovo_distances_paths:
distances[genotype] = pathogist.io.open_distance_file(denovo_distances_paths[genotype])
logger.info(' Finished creating distance matrices.')
# Match the distance matrices if need be
distance_matrix_samples = [frozenset(distances[key].columns.values) for key in distances]
if (len(set(distance_matrix_samples)) > 1):
logger.info(' WARNING, different samples described by distance matrices.')
logger.info(' Only samples that are contained in all distance matrices will be clustered.')
distances = pathogist.distance.match_distance_matrices(distances)
genotypes = distances.keys()
thresholds = clustering_args['thresholds']
all_constraints = clustering_args['all_constraints']
output_prefix = clustering_args['output_prefix']
fine_clusterings = clustering_args['fine_clusterings']
method = clustering_args['method']
presolve = clustering_args['presolve']
# Sort the indices and columns to keep results consistent between runs
for genotype in genotypes:
distances[genotype] = distances[genotype].sort_index(axis=0).sort_index(axis=1)
clusterings = {}
for genotype in genotypes:
logger.info(' Clustering samples based on %s data...' % genotype)
clustering = pathogist.cluster.correlation(distances[genotype],thresholds[genotype], all_constraints=all_constraints,method=method)
clusterings[genotype] = clustering
if temp_dir is not None:
cluster_output_path = temp_dir + ("/%s_clustering.tsv" % genotype)
logger.info(" Saving %s clustering at %s..." % (genotype,cluster_output_path))
pathogist.io.output_clustering(clustering,cluster_output_path)
logger.info(' Finding consensus clustering...')
if clustering_args['visualize']:
consensus_weight_matrix = pathogist.cluster.construct_consensus_weights(clusterings,
distances,
fine_clusterings)
if temp_dir is not None:
consensus_weight_output_path = temp_dir + "/consensus_weight_matrix.tsv"
logger.info(" Saving consensus weight matrix at %s..." % consensus_weight_output_path)
pathogist.io.write_distance_matrix(consensus_weight_matrix,consensus_weight_output_path)
else:
consensus_weight_matrix = None
consensus_clustering = pathogist.cluster.consensus(distances,clusterings,fine_clusterings,
weight_matrix=consensus_weight_matrix,
all_constraints=all_constraints,
method=method)
summary_clustering = pathogist.cluster.summarize_clusterings(consensus_clustering,clusterings)
logger.info(" Finished consensus clustering.")
logger.info(' Writing clusterings to file...')
clustering_output_path = '%s.tsv' % output_prefix
pathogist.io.output_clustering(summary_clustering,clustering_output_path)
if clustering_args['visualize']:
logger.info(" Visualizing clusterings and writing image to file...")
visual_output_prefix = output_prefix
pathogist.visualize.visualize_clusterings(summary_clustering,
output_prefix=visual_output_prefix,
mode='spring')
def run_all(param, major, minor, patch):
'''
Run the entire PathOGiST pipeline from genotyping to consensus clustering, or create
a new configuration file.
'''
if param.new_config:
# Copy the default configuration file to wherever the user has specified
try:
src_path = pkg_resources.resource_filename(__name__,'pathogist/resources/blank_config.yaml')
shutil.copyfile(src_path,param.config)
except IOError:
urllib.urlretrieve("https://github.com/WGS-TB/PathOGiST/releases/download/v{0}.{1}.{2}/blank_config.yaml"
.format(major, minor, patch), param.config)
print("New configuration file written at %s" % param.config)
else:
with open(param.config,'r') as config_stream:
try:
config = yaml.load(config_stream)
except yaml.YAMLError:
print(yaml.YAMLError)
sys.exit(1)
pathogist.io.assert_config(config)
# Determine whether to save temporary files, and which directory to do so
temp_dir = config['temp'].rstrip('/')
# remove existing temp files
if os.path.isdir(temp_dir):
subprocess.call('rm -rf ' + temp_dir + '/*', shell=True)
threads = config['threads']
denovo_calls_dists_paths = {'calls': {}, 'distances': {}}
# genotyping software commands
if 'genotyping' in config:
run_args = config['run']
genotyping_args = config['genotyping']
denovo_calls_dists_paths = run_genotyping_tools(genotyping_args,run_args,threads,temp_dir)
clustering_args = config['clustering']
call_clustering_commands(clustering_args,run_args,denovo_calls_dists_paths,threads,temp_dir)
logger.info(" All done.")
def correlation(param):
logger.info(" Opening distance matrix...")
distance_matrix = pathogist.io.open_distance_file(param.distance_matrix)
logger.debug("Creating and solving correlation clustering problem ... ")
clustering = pathogist.cluster.correlation(distance_matrix,param.threshold,param.all_constraints,param.method)
logger.debug("Outputting clustering...")
pathogist.io.output_clustering(clustering,param.output_path)
''' legacy
logger.info(" Creating and solving correlation clustering problem ... ")
clustering = pathogist.cluster.correlation(distance_matrix,param.threshold,param.all_constraints)
logger.info(" Outputting clustering...")
'''
def consensus(param):
logger.info(" Reading distance matrices ...")
distances = collections.OrderedDict()
with open(param.distance_matrices,'r') as file:
for line in file:
name,path = line.rstrip().split('=')
distances[name] = pathogist.io.open_distance_file(path)
for cluster1,cluster2 in itertools.combinations(distances.keys(),2):
columns1 = sorted(list(distances[cluster1].columns.values))
columns2 = sorted(list(distances[cluster2].columns.values))
assert( len(columns1) == len(columns2) )
assert( columns1 == columns2 )
rows1 = sorted(list(distances[cluster1].index.values))
rows2 = sorted(list(distances[cluster1].index.values))
assert( len(rows1) == len(rows2) )
assert( rows1 == rows2 )
logger.info(" Getting clusterings ...")
clustering_vectors = collections.OrderedDict()
clusterings = collections.OrderedDict()
with open(param.clusterings,'r') as file:
for line in file:
cluster,path = line.rstrip().split('=')
clusterings[cluster] = pathogist.io.open_clustering_file(path)
for cluster1,cluster2 in itertools.combinations(clusterings.keys(),2):
columns1 = sorted(list(clusterings[cluster1].columns.values))
columns2 = sorted(list(clusterings[cluster2].columns.values))
assert( len(columns1) == len(columns2) )
assert( columns1 == columns2 )
rows1 = sorted(list(clusterings[cluster1].index.values))
rows2 = sorted(list(clusterings[cluster1].index.values))
assert( len(rows1) == len(rows2) )
assert( rows1 == rows2 )
logger.info(" Getting other metadata ...")
fine_clusterings = []
with open(param.fine_clusterings,'r') as file:
for line in file:
fine_clusterings.append( line.rstrip() )
# Match the distance matrices if need be
distance_matrix_samples = [frozenset(distances[key].columns.values) for key in distances]
if (len(set(distance_matrix_samples)) > 1):
logger.info('Warning: samples differ across the distance matrices.')
logger.info('Matching distance matrices ...')
distances = pathogist.distance.match_distance_matrices(distances)
logger.info("Creating and solving consensus clustering problem ...")
consensus_clustering = pathogist.cluster.consensus(distances,clusterings,fine_clusterings, all_constraints=param.all_constraints, method=param.method)
''' legacy
logger.info(" Creating and solving consensus clustering problem ...")
consensus_clustering = pathogist.cluster.consensus(distances,clusterings,fine_clusterings)
'''
summary_clustering = pathogist.cluster.summarize_clusterings(consensus_clustering,
clusterings)
logger.info(" Writing clusterings to file ...")
pathogist.io.output_clustering(summary_clustering,param.output_path)
def distance(param):
logger.info(" Creating distance matrix ...")
distance_matrix = None
read_genotyping_calls = {'SNP': pathogist.io.read_snp_calls,
'MLST': pathogist.io.read_mlst_calls,
'CNV': pathogist.io.read_cnv_calls,
'spoligotyping': pathogist.io.read_spotype_calls}
create_genotype_distance = {'SNP': pathogist.distance.create_snp_distance_matrix,
'MLST': pathogist.distance.create_mlst_distance_matrix,
'CNV': pathogist.distance.create_cnv_distance_matrix,
'spoligotyping': pathogist.distance.create_spotype_distance_matrix}
if param.bed == "":
calls = read_genotyping_calls[param.data_type](param.calls_path)
else:
if param.data_type == 'SNP':
calls = pathogist.io.read_snp_calls(param.calls_path, param.bed )
else:
# Output error when bed is used with non SNP data types
sys.exit('Bed option is only compatible with SNP genotype files')
distance_matrix = create_genotype_distance[param.data_type](calls)
'''legacy
if param.bed == "":
calls = read_genotyping_calls(param.data_type,param.calls_path)
else:
calls = pathogist.io.read_snp_calls_with_bed(param.calls_path,param.bed)
distance_matrix = create_genotype_distance_matrix(param.data_type,calls)
'''
if distance_matrix is not None:
logger.info(" Writing distance matrix ...")
pathogist.io.write_distance_matrix(distance_matrix,param.output_path)
logger.info(" Distance matrix creation complete!")
def visualize(param):
if param.data_type == 'distances':
logger.info(" Visualizing distance matrix ...")
distance_matrix = pathogist.io.open_distance_file(param.input)
pathogist.visualize.visualize(distance_matrix,param.sample_name)
elif param.data_type == 'clustering':
logger.info(" Visualing clusterings...")
summary_clustering = pathogist.io.open_clustering_file(param.input)
pathogist.visualize.visualize_clusterings(summary_clustering,mode='spring')
def main():
MAJOR_VERSION = 0
MINOR_VERSION = 3
PATCH_VERSION = 6
parser = argparse.ArgumentParser(description=('PathOGiST Version %d.%d.%d\n' +
'Copyright (C) 2018 Leonid Chindelevitch, Cedric Chauve, William Hsiao')
% (MAJOR_VERSION, MINOR_VERSION, PATCH_VERSION), formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('-ll', '--loglevel', type=str, default="INFO",
choices=['DEBUG','INFO','WARNING','ERROR','CRITICAL'],
help='Set the logging level')
subparsers = parser.add_subparsers(dest='subcommand')
subparsers.required = True
# command line arguments to run entire pipeline
run_parser = subparsers.add_parser(name='run',
help='run entire PathOGiST pipeline, from genotyping to clustering')
run_parser.add_argument("config", metavar="CONFIG", type=str,
help='path to input configuration file, or path to write a new configuration file')
run_parser.add_argument("-n","--new_config", action="store_true", default=False,
help="write a blank configuration file at path given by CONFIG")
# Correlation clustering command line arguments
corr_parser = subparsers.add_parser(name='correlation', help="perform correlation clustering")
corr_parser.add_argument("distance_matrix", type=str,
help="path to the distance matrix file")
corr_parser.add_argument("threshold", type=float,help="threshold value for correlation")
corr_parser.add_argument("output_path", type=str, help="path to write cluster output tsv file")
corr_parser.add_argument("-a", "--all_constraints", action="store_true", default=False,
help = "add all constraints to the optimization problem, "
+ "not just those with mixed signs.")
corr_parser.add_argument("-m","--method",type=str,choices=['C4','ILP'],default='C4',
help="Method for correlation clustering")
''' legacy
corr_parser.add_argument("-p","--presolve", action="store_true", default=False,
help="presolve the ILP")
help = "add all constraints to the optimization problem, not just those with mixed signs.")
corr_parser.add_argument("-s","--solver",type=str,choices=['cplex','pulp'],default='pulp',
help="LP solver interface to use")
'''
# Consensus clustering command line arguments
cons_parser = subparsers.add_parser(name='consensus',
help='perform consensus clustering on multiple clusterings')
cons_parser.add_argument("distance_matrices", type=str,
help = "path to file containing paths to distance matrices for different clusterings")
cons_parser.add_argument("clusterings", type=str,
help = "path to file containing paths to clusterings, represented as"
+ " either matrices or lists of clustering assignments")
cons_parser.add_argument("fine_clusterings", type=str,
help = "path to file containing the names of the clusterings which are the finest")
cons_parser.add_argument("output_path", type=str, help="path to output tsv file")
cons_parser.add_argument("-a", "--all_constraints", action="store_true", default=False,
help = "add all constraints to the optimization problem, "
+ " not just those with mixed signs.")
cons_parser.add_argument("-m","--method",type=str,choices=['C4','ILP'],default='C4',
help="Method for consensus clustering")
'''legacy
help = "add all constraints to the optimization problem, not just those with mixed signs.")
cons_parser.add_argument("-s","--solver",type=str,choices=['cplex','pulp'],default='pulp',
help="LP solver interface to use")
'''
# Distance command line arguments
distance_parser = subparsers.add_parser(name='distance', help = "construct distance matrix from "
+ "genotyping data")
distance_parser.add_argument("calls_path", type=str,
help = "path to file containing paths to signal calls "
+ "(e.g. MLST calls, CNV calls, etc)")
distance_parser.add_argument("data_type", type=str, choices=['MLST','CNV','SNP','Spoligotype'],
help = "genotyping data")
distance_parser.add_argument("output_path", type=str, help="path to output tsv file")
distance_parser.add_argument("--bed", type=str, default="", required=False,
help="bed file of unwanted SNP positions in the genome")
# Visualization command line arguments
vis_parser = subparsers.add_parser(name='visualize',
help="visualize distance matrix or clustering")
vis_parser.add_argument("input",type=str,
help="path to distance matrix or clustering, all in tsv format")
vis_parser.add_argument("data_type",type=str,choices=['clustering','distances'],
help="type of data for the input")
param = parser.parse_args()
logging.basicConfig(level=param.loglevel,
format='%(asctime)s (%(relativeCreated)d ms) -> %(levelname)s:%(message)s',
datefmt='%I:%M:%S %p')
if param.subcommand == 'run':
run_all(param, MAJOR_VERSION, MINOR_VERSION, PATCH_VERSION)
elif param.subcommand == 'correlation':
correlation(param)
elif param.subcommand == 'consensus':
consensus(param)
elif param.subcommand == 'distance':
distance(param)
elif param.subcommand == 'visualize':
visualize(param)
if __name__ == "__main__":
main()