-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathfakeaps.c
2458 lines (2071 loc) · 85 KB
/
fakeaps.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
Code taken from the following website:
http://www.evanjones.ca/software/fakeaps.c
Thanks to Evan Jones for his work.
And used to implement the authentication, association. And finally our purpose is to implement frame aggregation (A-MPDU).
This changes will be made by Cristian Hernandez.
TO USE IT YOU NEED A NETWORK DRIVER THAT SUPPORTS RADIOTAP, OTHERWISE IT WILL NOT WORK AS EXPECTED
Fake Access Points using Atheros wireless cards in Linux
Written by Evan Jones <[email protected]>
Released under a BSD Licence
How to Use:
1. Customize the array of access points below, if you want.
2. Bring up your Atheros interface on the desired channel.
3. Enable the raw device (echo "1" > /proc/sys/dev/ath0/rawdev)
4. Configure the raw device to use radiotap headers (echo "2" > /proc/sys/dev/ath0/rawdev_type)
5. Bring up the raw device (ifconfig ath0raw up)
6. Start this program (./fakeaps ath0raw [channel number for ath0])
How to Compile:
1. Get the "ieee80211.h" and "ieee80211_radiotap.h" headers from the MadWiFi
distribution:
http://cvs.sourceforge.net/viewcvs.py/madwifi/madwifi/net80211/
2. gcc --std=gnu99 -Wall -o fakeaps fakeaps.c
Thanks go out to John Bicket for his help in getting the raw device to work
correctly, and getting it included in the MadWiFi driver.
http://pdos.csail.mit.edu/~jbicket/
Thanks also to Sebastian Weitzel for his athrawsend program:
http://www.togg.de/stuff/athrawsend.c
Thanks also to Silver Moon for his implementation of sending an UDP frame
http://www.binarytides.com/raw-udp-sockets-c-linux/
*/
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <stdlib.h>
#include <stdint.h>
#include <unistd.h>
#include <netinet/in.h>
#include <netinet/udp.h> //Provides declarations for the UDP header
#include <netinet/ip.h> //Provides declarations for the IP header
#include <arpa/inet.h>
#include <net/if.h>
#include <linux/if_packet.h>
#include <linux/if_ether.h>
#include <sys/time.h>
#include <time.h>
#define __packed __attribute__((__packed__))
#include "ieee80211.h"
#include "ieee80211_radiotap.h"
#include <endian.h>
#define WLAN_TAG_PARAM_SIZE 512
#define DUMP_PACKETS 1 // if you set this to 0, you will see no packets dump
// 1, only the A-MPDUs or the MPDUs (data packets) will be dump
// 2, all the generated packets will be dump by the screen
#define DEBUG_LEVEL 2 // if you set this to 0, you will not see anything by the screen
// 1, you will see a message when a data frame or a block ACK is sent
// 2, you will see a message every time a frame is sent
uint8_t seqnumber[2] = {0, 0};
uint8_t firstSequence[2] = {0, 0};
uint32_t mpduseq = 0;
//This from https://stackoverflow.com/questions/11523844/802-11-fcs-crc32
// there are 256 values
const uint32_t crctable[] = {
0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L, 0x706af48fL, 0xe963a535L, 0x9e6495a3L,
0x0edb8832L, 0x79dcb8a4L, 0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L, 0x90bf1d91L,
0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL, 0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L,
0x136c9856L, 0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L, 0xfa0f3d63L, 0x8d080df5L,
0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L, 0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L, 0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L,
0x26d930acL, 0x51de003aL, 0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L, 0xb8bda50fL,
0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L, 0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL,
0x76dc4190L, 0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL, 0x9fbfe4a5L, 0xe8b8d433L,
0x7807c9a2L, 0x0f00f934L, 0x9609a88eL, 0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL, 0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L,
0x65b0d9c6L, 0x12b7e950L, 0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L, 0xfbd44c65L,
0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L, 0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL,
0x4369e96aL, 0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L, 0xaa0a4c5fL, 0xdd0d7cc9L,
0x5005713cL, 0x270241aaL, 0xbe0b1010L, 0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L, 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL,
0xedb88320L, 0x9abfb3b6L, 0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L, 0x73dc1683L,
0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L, 0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L,
0xf00f9344L, 0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL, 0x196c3671L, 0x6e6b06e7L,
0xfed41b76L, 0x89d32be0L, 0x10da7a5aL, 0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L, 0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL,
0xd80d2bdaL, 0xaf0a1b4cL, 0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL, 0x4669be79L,
0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L, 0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL,
0xc5ba3bbeL, 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L, 0x2cd99e8bL, 0x5bdeae1dL,
0x9b64c2b0L, 0xec63f226L, 0x756aa39cL, 0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL, 0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L,
0x86d3d2d4L, 0xf1d4e242L, 0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L, 0x18b74777L,
0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL, 0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L,
0xa00ae278L, 0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L, 0x4969474dL, 0x3e6e77dbL,
0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L, 0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L, 0xcdd70693L, 0x54de5729L, 0x23d967bfL,
0xb3667a2eL, 0xc4614ab8L, 0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL, 0x2d02ef8dL
};
// returns a CRC of 32 bytes
uint32_t crc32( uint32_t bytes_sz, // size of the bytes
const uint8_t *bytes // chain of bytes
)
{
uint32_t crc = ~0;
uint32_t i;
for(i = 0; i < bytes_sz; ++i) {
crc = crctable[(crc ^ bytes[i]) & 0xff] ^ (crc >> 8);
}
return ~crc;
}
/* Definition of an authentication request/response */
struct ieee80211_authentication {
uint16_t alg;
uint16_t seq;
uint16_t status;
/* We do not support shared key auth */
} __attribute__ ((packed));
/* Definition of an association response */
struct ieee80211_association_response {
uint16_t capab_info;
uint16_t status;
uint16_t aid;
} __attribute__ ((packed));
struct ieee80211_addba_request
{
uint8_t category;
uint8_t actionCode;
uint8_t dialogToken;
uint16_t BA_params;
uint16_t BA_timeout;
uint16_t seq;
} __attribute__ ((packed));
struct ieee80211_addba_response
{
uint8_t category;
uint8_t actionCode;
uint8_t dialogToken;
uint16_t status;
uint16_t BA_params;
uint16_t BA_timeout;
} __attribute__ ((packed));
struct ieee80211_baframe {
u_int8_t i_fc[2];
u_int8_t i_dur[2];
u_int8_t i_addr1[IEEE80211_ADDR_LEN];
u_int8_t i_addr2[IEEE80211_ADDR_LEN];
} __attribute__ ((packed));
struct ieee80211_ba_request
{
uint16_t BA_control;
uint16_t BA_seq;
} __attribute__ ((packed));
struct llc
{
uint8_t DSAP;
uint8_t SSAP;
uint8_t control;
} __attribute__ ((packed));
struct snap
{
uint16_t OID1;
uint8_t OID2;
uint16_t protocolID;
} __attribute__ ((packed));
struct pseudo_header //For doing the udp checksum
{
u_int32_t source_address;
u_int32_t dest_address;
u_int8_t placeholder;
u_int8_t protocol;
u_int16_t udp_length;
} __attribute__ ((packed));
struct mpdu_delimiter
{
u_int16_t reservedAndLength;
u_int8_t crc;
u_int8_t delimiterSignature;
} __attribute__ ((packed));
struct ampdu_status
{
uint32_t reference;
uint16_t flags;
} __attribute__ ((packed));
struct HTCapabilities
{
uint16_t info;
uint8_t ampduParams;
uint32_t rxModulation1;
uint32_t rxModulation2;
uint16_t rxModulation3;
uint16_t highestDataRate;
uint8_t txParams;
uint16_t empty1;
uint8_t empty2;
uint16_t extendedCap;
uint32_t beanFormingCap;
uint8_t antennaSelectionCap;
} __attribute__ ((packed));
struct HTInfo
{
uint8_t channel;
uint8_t subset1;
uint16_t subset2;
uint16_t subset3;
uint64_t rxModulation1;
uint64_t rxModulation2;
} __attribute__ ((packed));
struct vendor
{
uint16_t oid1;
uint8_t oid2;
uint8_t type;
uint8_t subtype;
uint8_t version;
uint8_t qosInfo;
uint8_t reserved;
uint8_t ACI0;
uint8_t ECW0;
uint16_t TxLim0;
uint8_t ACI1;
uint8_t ECW1;
uint16_t TxLim1;
uint8_t ACI2;
uint8_t ECW2;
uint16_t TxLim2;
uint8_t ACI3;
uint8_t ECW3;
uint16_t TxLim3;
} __attribute__ ((packed));
struct FCS
{
uint32_t FCSvalue;
};
int openSocket( const char device[IFNAMSIZ] )
{
struct ifreq ifr;
struct sockaddr_ll ll;
const int protocol = ETH_P_ALL;
int sock = -1;
assert( sizeof( ifr.ifr_name ) == IFNAMSIZ );
sock = socket( PF_PACKET, SOCK_RAW, htons(protocol) );
if ( sock < 0 )
{
perror( "socket failed (do you have root priviledges?)" );
return -1;
}
memset( &ifr, 0, sizeof( ifr ) );
strncpy( ifr.ifr_name, device, sizeof(ifr.ifr_name) );
if (ioctl(sock, SIOCGIFINDEX, &ifr) < 0)
{
perror("ioctl[SIOCGIFINDEX]");
close(sock);
return -1;
}
memset( &ll, 0, sizeof(ll) );
ll.sll_family = AF_PACKET;
ll.sll_ifindex = ifr.ifr_ifindex;
ll.sll_protocol = htons(protocol);
if ( bind( sock, (struct sockaddr *) &ll, sizeof(ll) ) < 0 ) {
perror( "bind[AF_PACKET]" );
close( sock );
return -1;
}
// Enable promiscuous mode
//~ struct packet_mreq mr;
//~ memset( &mr, 0, sizeof( mr ) );
//~ mr.mr_ifindex = ll.sll_ifindex;
//~ mr.mr_type = PACKET_MR_PROMISC;
//~ if( setsockopt( sock, SOL_PACKET, PACKET_ADD_MEMBERSHIP, &mr, sizeof( mr ) ) < 0 )
//~ {
//~ perror( "setsockopt[PACKET_MR_PROMISC]" );
//~ close( sock );
//~ return -1;
//~ }
return sock;
}
void parseMACAddresses(char* data, u_int8_t* address)
{
int cont = 1;
char *token = strtok(data, ":");
*address = strtol(token, NULL, 16);
while (token != NULL)
{
token = strtok (NULL, ":");
if(token != NULL)
{
*(address+cont) = strtol(token, NULL, 16);
cont++;
}
}
}
void parseIPAddresses(char* data, u_int8_t* address)
{
int cont = 1;
char *primeraPalabra = strtok(data, ".");
char *token = primeraPalabra;
*address = atoi(token);
while (token != NULL)
{
token = strtok (NULL, ".");
if(token != NULL)
{
*(address+cont) = atoi(token);
cont++;
}
}
}
uint8_t checksum (uint8_t *buffer, int cantidad) {
register uint32_t suma = 0;
while (cantidad--) {
suma += *buffer++;
if (suma & 0xFFFF0000) {
/* hubo acarreo, se debe incrementar el resultado */
suma &= 0xFFFF;
suma++;
}
}
return ~(suma & 0xFFFF);
}
/*uint8_t CRC8(uint8_t* bytes, int length)
{
const uint8_t generator = 0x07;
uint8_t crc = 0; // start with 0 so first byte can be 'xored' in
for (int i = 0; i < length; i++)
{
crc ^= *(bytes+i); // XOR-in the next input byte
for (int j = 0; j < 8; j++)
{
if ((crc & 0x80) != 0)
{
crc = (uint8_t)((crc << 1) ^ generator);
}
else
{
crc <<= 1;
}
}
}
return crc;
}*/
#define GP 0x107 /* x^8 + x^2 + x + 1 */
#define DI 0x07
static uint8_t crc8_table[256]; /* 8-bit table */
static int made_table=0;
static void init_crc8()
/*
* Should be called before any other crc function.
*/
{
int i,j;
uint8_t crc;
if (!made_table) {
for (i=0; i<256; i++) {
crc = i;
for (j=0; j<8; j++)
crc = (crc << 1) ^ ((crc & 0x80) ? DI : 0);
crc8_table[i] = crc & 0xFF;
/* printf("table[%d] = %d (0x%X)\n", i, crc, crc); */
}
made_table=1;
}
}
void crc8(uint8_t *crc, uint8_t m)
/*
* For a byte array whose accumulated crc value is stored in *crc, computes
* resultant crc obtained by appending m to the byte array
*/
{
if (!made_table)
init_crc8();
*crc = crc8_table[(*crc) ^ m];
*crc &= 0xFF;
}
void packet_hexdump(const uint8_t* data, size_t size)
{
size_t i;
printf("%02x:", data[0]);
for(i=1; i<size; i++){
printf("%02x:", data[i]);
if ( (i & 0xf) == 0xf )
{
// Add a carrage return every 16 bytes
printf( "\n" );
}
}
printf("\n\n");
}
/** Get the current 802.11 64-bit timestamp from the system time. */
/*uint64_t getCurrentTimestamp()
{
struct timeval t;
int code = gettimeofday( &t, NULL );
assert( code == 0 );
if ( code != 0 )
{
perror( "error calling gettimeofday" );
assert( 0 );
}
// Convert seconds to microseconds
// For the purposes of 802.11 timestamps, we don't care about what happens
// when this value wraps. As long as the value wraps consistently, we are
// happy
uint64_t timestamp = t.tv_sec * 1000000LL;
timestamp += t.tv_usec;
return timestamp;
}*/
/** Add increment microseconds to time, computing the overflow correctly. */
void incrementTimeval( struct timeval* time, suseconds_t increment )
{
assert( time != NULL );
assert( 0 <= time->tv_usec && time->tv_usec < 1000000 );
if ( increment >= 1000000 )
{
// Add the seconds to the seconds field, and keep the remainder
time->tv_sec += (increment/1000000);
increment = increment % 1000000;
}
assert( increment < 1000000 );
time->tv_usec += increment;
if ( time->tv_usec >= 1000000 )
{
time->tv_sec += 1;
time->tv_usec -= 1000000;
assert( 0 <= time->tv_usec && time->tv_usec < 1000000 );
}
}
/** Computes "second = first - second" including the underflow "borrow." */
void differenceTimeval( const struct timeval* first, struct timeval* second )
{
assert( first != NULL );
assert( second != NULL );
second->tv_sec = first->tv_sec - second->tv_sec;
second->tv_usec = first->tv_usec - second->tv_usec;
// If underflow occured, borrow a second from the higher field
if ( second->tv_usec < 0 )
{
second->tv_sec -= 1;
second->tv_usec += 1000000;
// If this assertion fails, the initial timevals had invalid values
assert( 0 <= second->tv_usec && second->tv_usec < 1000000 );
}
}
/** Returns a negative integer if first < second, zero if first == second, and a positive integer if first > second. */
int compareTimeval( const struct timeval* first, const struct timeval* second )
{
int difference = first->tv_sec - second->tv_sec;
if ( difference == 0 )
{
// If the seconds fields are equal, compare based on the microseconds
difference = first->tv_usec - second->tv_usec;
}
return difference;
}
struct AccessPointDescriptor
{
uint8_t macAddress[IEEE80211_ADDR_LEN];
const uint8_t* ssid;
size_t ssidLength;
const uint8_t* dataRates;
size_t dataRatesLength;
};
static const uint8_t IEEE80211_BROADCAST_ADDR[IEEE80211_ADDR_LEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
static const uint8_t IEEE80211_DEFAULT_RATES[] = {
0x82,
0x84,
0x8b,
0x0c,
0x12,
0x96,
0x18,
0x24
};
//~ static const size_t IEEE80211_DEFAULT_RATES_LENGTH = sizeof(IEEE80211_DEFAULT_RATES);
#define IEEE80211_DEFAULT_RATES_LENGTH sizeof(IEEE80211_DEFAULT_RATES)
static const uint8_t IEEE80211_EXTENDED_RATES[] = {
0x30,
0x48,
0x60,
0x6c
};
#define IEEE80211_EXTENDED_RATES_LENGTH sizeof(IEEE80211_EXTENDED_RATES)
struct ieee80211_beacon {
u_int64_t beacon_timestamp;
u_int16_t beacon_interval;
u_int16_t beacon_capabilities;
} __attribute__((__packed__));
struct ieee80211_info_element {
u_int8_t info_elemid;
u_int8_t info_length;
u_int8_t* info[0];
} __attribute__((__packed__));
/** Converts a 16-bit integer from host byte order to little-endian byte order. Not implement yet. */
//inline uint16_t htole16( uint16_t src ) { return src; }
#define BEACON_INTERVAL 102400
/** Returns a beacon packet for the specified descriptor. The packet will be allocated using malloc. */
void constructBeaconPacket(uint8_t* packet, uint8_t dataRate, uint8_t channel, const struct AccessPointDescriptor* apDescription, size_t* beaconLength )
{
// Validate parameters
assert( apDescription != NULL );
assert( beaconLength != NULL );
assert( 0 <= apDescription->ssidLength && apDescription->ssidLength <= 32 );
assert( 1 <= apDescription->dataRatesLength && apDescription->dataRatesLength <= 8 );
////uint8_t dataRateValue = (dataRate & IEEE80211_RATE_VAL);
// For 802.11b, either 1 or 2 Mbps is the permitted rate for broadcasts
// For 802.11a, 6Mbps is the permitted rate for broadcasts
//assert( dataRateValue == 0x02 || dataRateValue == 0x04 || dataRateValue == 0x12 );
assert( packet != NULL );
size_t remainingBytes = *beaconLength;
// Add the radiotap header
assert( remainingBytes >= sizeof(struct ieee80211_radiotap_header) );
struct ieee80211_radiotap_header* radiotap = (struct ieee80211_radiotap_header*) packet;
uint8_t* packetIterator = packet + sizeof(*radiotap);
remainingBytes -= sizeof(*radiotap);
radiotap->it_version = 0;
radiotap->it_len = sizeof(*radiotap) + sizeof(dataRate);
radiotap->it_present = (1 << IEEE80211_RADIOTAP_RATE);
// Add the data rate for the radiotap header
assert( remainingBytes >= sizeof(dataRate) );
*packetIterator = (dataRate & IEEE80211_RATE_VAL);
packetIterator ++;
remainingBytes -= sizeof(dataRate);
// Build the 802.11 header
assert( remainingBytes >= sizeof(struct ieee80211_frame) );
struct ieee80211_frame* dot80211 = (struct ieee80211_frame*) packetIterator;
packetIterator += sizeof(*dot80211);
remainingBytes -= sizeof(*dot80211);
// Beacon packet flags
dot80211->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON;
//printf("%i\n", *dot80211->i_fc);
dot80211->i_fc[1] = IEEE80211_FC1_DIR_NODS;
//printf("%i\n", *dot80211->i_fc);
//Add by CHdezFdez, using other beacon as example
dot80211->i_dur[0] = 0x00;
dot80211->i_dur[1] = 0x00;
// Destination = broadcast (no retries)
memcpy( dot80211->i_addr1, IEEE80211_BROADCAST_ADDR, IEEE80211_ADDR_LEN );
// Source = our own mac address
memcpy( dot80211->i_addr2, apDescription->macAddress, IEEE80211_ADDR_LEN );
// BSS = our mac address
memcpy( dot80211->i_addr3, apDescription->macAddress, IEEE80211_ADDR_LEN );
// Sequence control
dot80211->i_seq[0] = seqnumber[0]&0xf0;
dot80211->i_seq[1] = seqnumber[1];
if(seqnumber[0]<0xf0)
{
seqnumber[0] += (1<<4);
}else{
seqnumber[0]=0;
seqnumber[1]++;
}
// Add the beacon frame
assert( remainingBytes >= sizeof(struct ieee80211_beacon) );
struct ieee80211_beacon* beacon = (struct ieee80211_beacon*) packetIterator;
packetIterator += sizeof(*beacon);
remainingBytes -= sizeof(*beacon);
beacon->beacon_timestamp = 0x000000000000000000;//getCurrentTimestamp();
// interval = 100 "time units" = 102.4 ms
// Each time unit is equal to 1024 us
beacon->beacon_interval = htole16( BEACON_INTERVAL/1024 );
// capabilities = sent by ESS
beacon->beacon_capabilities = IEEE80211_CAPINFO_ESS | IEEE80211_CAPINFO_IMMEDIATE_B_ACK | IEEE80211_CAPINFO_QOS;
// Add the SSID
assert( remainingBytes >= sizeof(struct ieee80211_info_element) + apDescription->ssidLength );
struct ieee80211_info_element* info = (struct ieee80211_info_element*) packetIterator;
packetIterator += sizeof(struct ieee80211_info_element) + apDescription->ssidLength;
remainingBytes -= sizeof(struct ieee80211_info_element) + apDescription->ssidLength;
info->info_elemid = IEEE80211_ELEMID_SSID;
info->info_length = apDescription->ssidLength;
memcpy( info->info, apDescription->ssid, apDescription->ssidLength );
// Add the data rates
assert( remainingBytes >= sizeof(struct ieee80211_info_element) + apDescription->dataRatesLength );
info = (struct ieee80211_info_element*) packetIterator;
packetIterator += sizeof(struct ieee80211_info_element) + apDescription->dataRatesLength;
remainingBytes -= sizeof(struct ieee80211_info_element) + apDescription->dataRatesLength;
info->info_elemid = IEEE80211_ELEMID_RATES;
info->info_length = apDescription->dataRatesLength;
memcpy( info->info, apDescription->dataRates, apDescription->dataRatesLength );
// Add the channel
assert( remainingBytes >= sizeof(struct ieee80211_info_element) + sizeof(channel) );
info = (struct ieee80211_info_element*) packetIterator;
packetIterator += sizeof(struct ieee80211_info_element) + sizeof(channel);
remainingBytes -= sizeof(struct ieee80211_info_element) + sizeof(channel);
info->info_elemid = IEEE80211_ELEMID_DSPARMS;
info->info_length = sizeof(channel);
memcpy( info->info, &channel, sizeof(channel) );
// Add the HT-Capabilities
assert( remainingBytes >= sizeof(struct ieee80211_info_element) + sizeof(struct HTCapabilities) );
info = (struct ieee80211_info_element*) packetIterator;
packetIterator += sizeof(struct ieee80211_info_element) + sizeof(struct HTCapabilities);
remainingBytes -= sizeof(struct ieee80211_info_element) + sizeof(struct HTCapabilities);
info->info_elemid = IEEE80211_ELEMID_HTCAPS;
info->info_length = sizeof(struct HTCapabilities);
struct HTCapabilities htcap;
htcap.info = htons(0xee19);
htcap.ampduParams = 0x1b;
htcap.rxModulation1 = htonl(0xffffff00);
htcap.rxModulation2 = 0x00000000;
htcap.rxModulation3 = 0x0000;
htcap.highestDataRate = 0x0000;
htcap.txParams = 0x00;
htcap.empty1 = 0x0000;
htcap.empty2 = 0x00;
htcap.extendedCap = 0x0000;
htcap.beanFormingCap = 0x00000000;
htcap.antennaSelectionCap = 0x00;
memcpy( info->info, &htcap, sizeof(htcap) );
// Add the extended data rates
assert( remainingBytes >= sizeof(struct ieee80211_info_element) + IEEE80211_EXTENDED_RATES_LENGTH );
info = (struct ieee80211_info_element*) packetIterator;
packetIterator += sizeof(struct ieee80211_info_element) + IEEE80211_EXTENDED_RATES_LENGTH;
remainingBytes -= sizeof(struct ieee80211_info_element) + IEEE80211_EXTENDED_RATES_LENGTH;
info->info_elemid = IEEE80211_ELEMID_XRATES;
info->info_length = IEEE80211_EXTENDED_RATES_LENGTH;
memcpy( info->info, IEEE80211_EXTENDED_RATES, IEEE80211_EXTENDED_RATES_LENGTH );
// Add the HT-Capabilities
assert( remainingBytes >= sizeof(struct ieee80211_info_element) + sizeof(struct HTInfo) );
info = (struct ieee80211_info_element*) packetIterator;
packetIterator += sizeof(struct ieee80211_info_element) + sizeof(struct HTInfo);
remainingBytes -= sizeof(struct ieee80211_info_element) + sizeof(struct HTInfo);
info->info_elemid = IEEE80211_ELEMID_HTOP;
info->info_length = sizeof(struct HTInfo);
struct HTInfo htinf;
htinf.channel = 0x05;
htinf.subset1 = 0x00;
htinf.subset2 = htons(0x0700);
htinf.subset3 = 0x0000;
htinf.rxModulation1 = 0x000000000000000000;
htinf.rxModulation2 = 0x000000000000000000;
memcpy( info->info, &htinf, sizeof(htinf) );
// Add the Microsoft: WMM/WME
assert( remainingBytes >= sizeof(struct ieee80211_info_element) + sizeof(struct vendor) );
info = (struct ieee80211_info_element*) packetIterator;
packetIterator += sizeof(struct ieee80211_info_element) + sizeof(struct vendor);
remainingBytes -= sizeof(struct ieee80211_info_element) + sizeof(struct vendor);
info->info_elemid = IEEE80211_ELEMID_VENDOR;
info->info_length = sizeof(struct vendor);
struct vendor WMM;
WMM.oid1 = htons(0x0050);
WMM.oid2 = 0xf2;
WMM.type = 0x02;
WMM.subtype = 0x01;
WMM.version = 0x01;
WMM.qosInfo = 0x80;
WMM.reserved = 0x00;
WMM.ACI0 = 0x03;
WMM.ECW0 = 0xa4;
WMM.TxLim0 = 0x0000;
WMM.ACI1 = 0x27;
WMM.ECW1 = 0xa4;
WMM.TxLim1 = 0x0000;
WMM.ACI2 = 0x42;
WMM.ECW2 = 0x43;
WMM.TxLim2 = htons(0x005e);
WMM.ACI3 = 0x62;
WMM.ECW3 = 0x32;
WMM.TxLim3 = htons(0x002f);
memcpy( info->info, &WMM, sizeof(WMM) );
assert( remainingBytes == 0 );
//packet_hexdump( (const uint8_t*) packet, *beaconLength );
}
void constructProbeResponse(uint8_t* packet, uint8_t dataRate, uint8_t channel, const struct AccessPointDescriptor* apDescription, size_t* probeResponseLength, const uint8_t* destinationMAC )
{
// Validate parameters
assert( apDescription != NULL );
assert( probeResponseLength != NULL );
assert( 0 <= apDescription->ssidLength && apDescription->ssidLength <= 32 );
assert( 1 <= apDescription->dataRatesLength && apDescription->dataRatesLength <= 8 );
////uint8_t dataRateValue = (dataRate & IEEE80211_RATE_VAL);
// For 802.11b, either 1 or 2 Mbps is the permitted rate for broadcasts
// For 802.11a, 6Mbps is the permitted rate for broadcasts
//assert( dataRateValue == 0x02 || dataRateValue == 0x04 || dataRateValue == 0x12 );
// Packet size: radiotap header + 1 byte for rate + ieee80211_frame header + beacon info + tags
assert( packet != NULL );
size_t remainingBytes = *probeResponseLength;
// Add the radiotap header
assert( remainingBytes >= sizeof(struct ieee80211_radiotap_header) );
struct ieee80211_radiotap_header* radiotap = (struct ieee80211_radiotap_header*) packet;
uint8_t* packetIterator = packet + sizeof(*radiotap);
remainingBytes -= sizeof(*radiotap);
radiotap->it_version = 0;
radiotap->it_len = sizeof(*radiotap) + sizeof(dataRate);
radiotap->it_present = (1 << IEEE80211_RADIOTAP_RATE);
// Add the data rate for the radiotap header
assert( remainingBytes >= sizeof(dataRate) );
*packetIterator = (dataRate & IEEE80211_RATE_VAL);
packetIterator ++;
remainingBytes -= sizeof(dataRate);
// Build the 802.11 header
assert( remainingBytes >= sizeof(struct ieee80211_frame) );
struct ieee80211_frame* dot80211 = (struct ieee80211_frame*) packetIterator;
packetIterator += sizeof(*dot80211);
remainingBytes -= sizeof(*dot80211);
// Beacon packet flags
dot80211->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP;
//printf("%i\n", *dot80211->i_fc);
dot80211->i_fc[1] = IEEE80211_FC1_DIR_NODS;
//printf("%i\n", *dot80211->i_fc);
//Add by CHdezFdez, using other beacon as example
dot80211->i_dur[0] = 0x00;
dot80211->i_dur[1] = 0x00;
// Destination = broadcast (no retries)
memcpy( dot80211->i_addr1, destinationMAC, IEEE80211_ADDR_LEN );
// Source = our own mac address
memcpy( dot80211->i_addr2, apDescription->macAddress, IEEE80211_ADDR_LEN );
// BSS = our mac address
memcpy( dot80211->i_addr3, apDescription->macAddress, IEEE80211_ADDR_LEN );
// Sequence control
dot80211->i_seq[0] = seqnumber[0]&0xf0;
dot80211->i_seq[1] = seqnumber[1];
if(seqnumber[0]<0xf0)
{
seqnumber[0] += (1<<4);
}else{
seqnumber[0]=0;
seqnumber[1]++;
}
// Add the beacon frame
assert( remainingBytes >= sizeof(struct ieee80211_beacon) );
struct ieee80211_beacon* beacon = (struct ieee80211_beacon*) packetIterator;
packetIterator += sizeof(*beacon);
remainingBytes -= sizeof(*beacon);
beacon->beacon_timestamp = 0x000000000000000000;//getCurrentTimestamp();
// interval = 100 "time units" = 102.4 ms
// Each time unit is equal to 1024 us
beacon->beacon_interval = htole16( BEACON_INTERVAL/1024 );
// capabilities = sent by ESS
beacon->beacon_capabilities = IEEE80211_CAPINFO_ESS | IEEE80211_CAPINFO_IMMEDIATE_B_ACK | IEEE80211_CAPINFO_QOS;
// Add the SSID
assert( remainingBytes >= sizeof(struct ieee80211_info_element) + apDescription->ssidLength );
struct ieee80211_info_element* info = (struct ieee80211_info_element*) packetIterator;
packetIterator += sizeof(struct ieee80211_info_element) + apDescription->ssidLength;
remainingBytes -= sizeof(struct ieee80211_info_element) + apDescription->ssidLength;
info->info_elemid = IEEE80211_ELEMID_SSID;
info->info_length = apDescription->ssidLength;
memcpy( info->info, apDescription->ssid, apDescription->ssidLength );
// Add the data rates
assert( remainingBytes >= sizeof(struct ieee80211_info_element) + apDescription->dataRatesLength );
info = (struct ieee80211_info_element*) packetIterator;
packetIterator += sizeof(struct ieee80211_info_element) + apDescription->dataRatesLength;
remainingBytes -= sizeof(struct ieee80211_info_element) + apDescription->dataRatesLength;
info->info_elemid = IEEE80211_ELEMID_RATES;
info->info_length = apDescription->dataRatesLength;
memcpy( info->info, apDescription->dataRates, apDescription->dataRatesLength );
// Add the channel
assert( remainingBytes >= sizeof(struct ieee80211_info_element) + sizeof(channel) );
info = (struct ieee80211_info_element*) packetIterator;
packetIterator += sizeof(struct ieee80211_info_element) + sizeof(channel);
remainingBytes -= sizeof(struct ieee80211_info_element) + sizeof(channel);
info->info_elemid = IEEE80211_ELEMID_DSPARMS;
info->info_length = sizeof(channel);
memcpy( info->info, &channel, sizeof(channel) );
// Add the HT-Capabilities
assert( remainingBytes >= sizeof(struct ieee80211_info_element) + sizeof(struct HTCapabilities) );
info = (struct ieee80211_info_element*) packetIterator;
packetIterator += sizeof(struct ieee80211_info_element) + sizeof(struct HTCapabilities);
remainingBytes -= sizeof(struct ieee80211_info_element) + sizeof(struct HTCapabilities);
info->info_elemid = IEEE80211_ELEMID_HTCAPS;
info->info_length = sizeof(struct HTCapabilities);
struct HTCapabilities htcap;
htcap.info = htons(0xac19);
htcap.ampduParams = 0x1b;
htcap.rxModulation1 = htonl(0xffffff00);
htcap.rxModulation2 = 0x00000000;
htcap.rxModulation3 = 0x0000;
htcap.highestDataRate = 0x0000;
htcap.txParams = 0x00;
htcap.empty1 = 0x0000;
htcap.empty2 = 0x00;
htcap.extendedCap = 0x0000;
htcap.beanFormingCap = 0x00000000;
htcap.antennaSelectionCap = 0x00;
memcpy( info->info, &htcap, sizeof(htcap) );
// Add the extended data rates
assert( remainingBytes >= sizeof(struct ieee80211_info_element) + IEEE80211_EXTENDED_RATES_LENGTH );
info = (struct ieee80211_info_element*) packetIterator;
packetIterator += sizeof(struct ieee80211_info_element) + IEEE80211_EXTENDED_RATES_LENGTH;
remainingBytes -= sizeof(struct ieee80211_info_element) + IEEE80211_EXTENDED_RATES_LENGTH;
info->info_elemid = IEEE80211_ELEMID_XRATES;
info->info_length = IEEE80211_EXTENDED_RATES_LENGTH;
memcpy( info->info, IEEE80211_EXTENDED_RATES, IEEE80211_EXTENDED_RATES_LENGTH );
// Add the HT-Capabilities
assert( remainingBytes >= sizeof(struct ieee80211_info_element) + sizeof(struct HTInfo) );
info = (struct ieee80211_info_element*) packetIterator;
packetIterator += sizeof(struct ieee80211_info_element) + sizeof(struct HTInfo);
remainingBytes -= sizeof(struct ieee80211_info_element) + sizeof(struct HTInfo);
info->info_elemid = IEEE80211_ELEMID_HTOP;
info->info_length = sizeof(struct HTInfo);
struct HTInfo htinf;
htinf.channel = 0x05;
htinf.subset1 = 0x00;
htinf.subset2 = htons(0x0700);
htinf.subset3 = 0x0000;
htinf.rxModulation1 = 0x000000000000000000;
htinf.rxModulation2 = 0x000000000000000000;
memcpy( info->info, &htinf, sizeof(htinf) );
// Add the Microsoft: WMM/WME
assert( remainingBytes >= sizeof(struct ieee80211_info_element) + sizeof(struct vendor) );
info = (struct ieee80211_info_element*) packetIterator;
packetIterator += sizeof(struct ieee80211_info_element) + sizeof(struct vendor);
remainingBytes -= sizeof(struct ieee80211_info_element) + sizeof(struct vendor);
struct vendor WMM;
WMM.oid1 = htons(0x0050);
WMM.oid2 = 0xf2;
WMM.type = 0x02;
WMM.subtype = 0x01;
WMM.version = 0x01;
WMM.qosInfo = 0x80;
WMM.reserved = 0x00;
WMM.ACI0 = 0x03;
WMM.ECW0 = 0xa4;
WMM.TxLim0 = 0x0000;
WMM.ACI1 = 0x27;
WMM.ECW1 = 0xa4;
WMM.TxLim1 = 0x0000;
WMM.ACI2 = 0x42;
WMM.ECW2 = 0x43;
WMM.TxLim2 = htons(0x005e);
WMM.ACI3 = 0x62;
WMM.ECW3 = 0x32;
WMM.TxLim3 = htons(0x002f);
memcpy( info->info, &WMM, sizeof(WMM) );
assert( remainingBytes == 0 );
//packet_hexdump( (const uint8_t*) packet, *beaconLength );
}
/*void constructACKPacket(uint8_t packet, uint8_t dataRate, uint8_t channel, const struct AccessPointDescriptor* apDescription, size_t* ACKLength, const uint8_t* destinationMAC )
{
//uint8_t dataRateValue = (dataRate & IEEE80211_RATE_VAL);
// For 802.11b, either 1 or 2 Mbps is the permitted rate for broadcasts
// For 802.11a, 6Mbps is the permitted rate for broadcasts
//assert( dataRateValue == 0x02 || dataRateValue == 0x04 || dataRateValue == 0x12 );
// Packet size: radiotap header + 1 byte for rate + ieee80211_frame_ack header
assert( packet != NULL );
size_t remainingBytes = *ACKLength;
// Add the radiotap header
assert( remainingBytes >= sizeof(struct ieee80211_radiotap_header) );
struct ieee80211_radiotap_header* radiotap = (struct ieee80211_radiotap_header*) packet;
uint8_t* packetIterator = packet + sizeof(*radiotap);
remainingBytes -= sizeof(*radiotap);
radiotap->it_version = 0;
radiotap->it_len = sizeof(*radiotap) + sizeof(dataRate);
radiotap->it_present = (1 << IEEE80211_RADIOTAP_RATE);
// Add the data rate for the radiotap header
assert( remainingBytes >= sizeof(dataRate) );
*packetIterator = (dataRate & IEEE80211_RATE_VAL);
packetIterator ++;
remainingBytes -= sizeof(dataRate);
// Build the 802.11 header for ACK
assert( remainingBytes >= sizeof(struct ieee80211_frame_ack) );
struct ieee80211_frame_ack* dot80211 = (struct ieee80211_frame_ack*) packetIterator;