forked from WilliamMajanja-zz/Partial-Realpart-Analysis-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPartialRealpartAnalysis.math
1 lines (1 loc) · 1.51 KB
/
PartialRealpartAnalysis.math
1
{%sigma sqrt{2%pi} }func e^-{{( f ( x ) = {1} over {%sigma sqrt{2%pi} }func e^-{{(x-%mu)^2} over {2%sigma^2}} C=%pi cdot d = 2 cdot %pi cdot rx-%mu)^2} over {2 f ( x ) = {1} over {%sigma sqrt{2%pi} }func e^-{{(x-%mu)^2} over {2%sigma^2}} a^2 + b^2 = c^2 f ( x ) = sum from { { i = 0 } } to { infinity } { {f^{(i)}(0)} over {i!} x^i}%sigma^2}}w circ n = k or b 600/1640 matrix{590 # 200 ## 6000 # 10000} left ldbracket64/25 left ldbracket32/65 right rdbracket84/350 right rdbracket250/980 lllint from{x} to{ f ( x ) = sum from { { i = i= f ( x ) = {1} over {%sigma sqrt{2%pi} }func e^-{{(x-%mu)^2} over {2%sigma^2}} } } to { 1n infinity } { {f^{(i)}( setR 0.0000000000000000000000.60)} over {i!} x^i}y} int emptyset setZ owns 652 nsupset 1640 aleph 10000 union 590 Re {1000000} f ( x ) = sum from { { i = 0 } } to { infinity } { {f^{( widevec {<?>} i)}( overstrike {<?>} 0)} over {i!} x^i}lllint V( x )( k )( l ) prod fact {l} 3 dotsup exp infinity dotsup a^2 + b^2 = c^2nroot{vf}{ f ( x ) = {1} over {%sigma sqrt{2%pi} }func e^-{{(x-%mu)^2} over {2%sigma^ f ( x ) = sum from { { i = 0 } } to { infinity } { {f^{(i)}(0)} over {i!} x^i}2}}} ( bnfrom{0} forall xyto{x notexists sum 10 uparrow 10 } partial Re200035822441652200233665225554458955662223 ) dotsdown k log(503) tan(6983 nroot{ liminf <156 <hj> transl <xv {5568} wideslash {<bn left langle <?> mline <?> right rangle >} > > 36}{24 f 66253 ) = {1} over {%sigma sqrt{x2%pi} }e^-{{(x-%mu)^2} over {y2%sigma^2}}f(x)0(k)0} )x01000101 widebslash 222360 bn dotsdown f ( x ) = {1} over f