-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathrun.py
239 lines (213 loc) · 11.6 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import argparse
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import logging
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
from data_loader import loader
from models import *
from alignment import tiny_infer
from Clustering import Clustering
parser = argparse.ArgumentParser(description='MvCLN in PyTorch')
parser.add_argument('--data', default='0', type=int,
help='choice of dataset, 0-Scene15, 1-Caltech101, 2-Reuters10, 3-NoisyMNIST')
parser.add_argument('-bs', '--batch-size', default='1024', type=int, help='number of batch size')
parser.add_argument('-e', '--epochs', default='80', type=int, help='number of epochs to run')
parser.add_argument('-lr', '--learn-rate', default='1e-3', type=float, help='learning rate of adam')
parser.add_argument('-noise', '--noisy-training', type=bool, default=True,
help='training with real labels or noisy labels')
parser.add_argument('-np', '--neg-prop', default='30', type=int, help='the ratio of negative to positive pairs')
parser.add_argument('-ap', '--aligned-prop', default='0.5', type=float,
help='originally aligned proportions in the partially view-aligned data')
parser.add_argument('-m', '--margin', default='5', type=int, help='initial margin')
parser.add_argument('--gpu', default=0, type=int, help='GPU device idx to use.')
parser.add_argument('-r', '--robust', default=1, type=int, help='use our robust loss or not')
parser.add_argument('-t', '--switching-time', default=1.0, type=float, help='start fine when neg_dist>=t*margin')
parser.add_argument('-s', '--start-fine', default=False, type=bool, help='flag to start use robust loss or not')
# mean distance of four kinds of pairs, namely, pos., neg., true neg., and false neg. (noisy labels)
pos_dist_mean_list, neg_dist_mean_list, true_neg_dist_mean_list, false_neg_dist_mean_list = [], [], [], []
class NoiseRobustLoss(nn.Module):
def __init__(self):
super(NoiseRobustLoss, self).__init__()
def forward(self, pair_dist, P, margin, use_robust_loss, args):
dist_sq = pair_dist * pair_dist
P = P.to(torch.float32)
N = len(P)
if use_robust_loss == 1:
if args.start_fine:
loss = P * dist_sq + (1 - P) * (1 / margin) * torch.pow(
torch.clamp(torch.pow(pair_dist, 0.5) * (margin - pair_dist), min=0.0), 2)
else:
loss = P * dist_sq + (1 - P) * torch.pow(torch.clamp(margin - pair_dist, min=0.0), 2)
else:
loss = P * dist_sq + (1 - P) * torch.pow(torch.clamp(margin - pair_dist, min=0.0), 2)
loss = torch.sum(loss) / (2.0 * N)
return loss
def train(train_loader, model, criterion, optimizer, epoch, args):
pos_dist = 0 # mean distance of pos. pairs
neg_dist = 0
false_neg_dist = 0 # mean distance of false neg. pairs (pairs in noisy labels)
true_neg_dist = 0
pos_count = 0 # count of pos. pairs
neg_count = 0
false_neg_count = 0 # count of neg. pairs (pairs in noisy labels)
true_neg_count = 0
if epoch % 10 == 0:
logging.info("=======> Train epoch: {}/{}".format(epoch, args.epochs))
model.train()
time0 = time.time()
loss_value = 0
for batch_idx, (x0, x1, labels, real_labels) in enumerate(train_loader):
# labels refer to noisy labels for the constructed pairs, while real_labels are the clean labels for these pairs
x0, x1, labels, real_labels = x0.to(args.gpu), x1.to(args.gpu), labels.to(args.gpu), real_labels.to(args.gpu)
try:
h0, h1 = model(x0.view(x0.size()[0], -1), x1.view(x1.size()[0], -1))
except:
print("error raise in batch", batch_idx)
pair_dist = F.pairwise_distance(h0, h1) # use Euclidean distance to measure similarity
pos_dist += torch.sum(pair_dist[labels == 1])
neg_dist += torch.sum(pair_dist[labels == 0])
true_neg_dist += torch.sum(pair_dist[torch.logical_and(labels == 0, real_labels == 0)])
false_neg_dist += torch.sum(pair_dist[torch.logical_and(labels == 0, real_labels == 1)])
pos_count += len(pair_dist[labels == 1])
neg_count += len(pair_dist[labels == 0])
true_neg_count += len(pair_dist[torch.logical_and(labels == 0, real_labels == 0)])
false_neg_count += len(pair_dist[torch.logical_and(labels == 0, real_labels == 1)])
loss = criterion(pair_dist, labels, args.margin, args.robust, args)
loss_value += loss.item()
if epoch != 0:
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_time = time.time() - time0
pos_dist /= pos_count
neg_dist /= neg_count
true_neg_dist /= true_neg_count
false_neg_dist /= false_neg_count
if epoch != 0 and args.robust == 1 and neg_dist >= args.switching_time * args.margin and not args.start_fine:
# start fine when the mean distance of neg. pairs is greater than switching_time * margin
args.start_fine = True
logging.info("******* neg_dist_mean >= {} * margin, start using fine loss at epoch: {} *******".format(
args.switching_time, epoch + 1))
# margin = the pos. distance + neg. distance before training
if epoch == 0 and args.margin != 1.0:
args.margin = max(1, round((pos_dist + neg_dist).item()))
logging.info("margin = {}".format(args.margin))
if epoch % 10 == 0:
logging.info("distance: pos. = {}, neg. = {}, true neg. = {}, false neg. = {}".format(round(pos_dist.item(), 2),
round(neg_dist.item(), 2),
round(
true_neg_dist.item(),
2), round(
false_neg_dist.item(), 2)))
logging.info(
"loss = {}, epoch_time = {} s".format(round(loss_value / len(train_loader), 2), round(epoch_time, 2)))
return pos_dist, neg_dist, false_neg_dist, true_neg_dist, epoch_time
def plot(acc, nmi, ari, CAR, args, data_name):
x = range(0, args.epochs + 1, 1)
fig_clustering = plt.figure()
ax_clustering = fig_clustering.add_subplot(1, 1, 1)
ax_clustering.set_title(data_name + ", " + "Noise=" + str(args.noisy_training) + ", RobustLoss=" + str(
args.robust * args.switching_time) + ", neg_prop=" + str(args.neg_prop))
lns1 = ax_clustering.plot(x, acc, label='acc')
lns2 = ax_clustering.plot(x, ari, label='ari')
lns3 = ax_clustering.plot(x, nmi, label='nmi')
lns4 = ax_clustering.plot(x, CAR, label='CAR')
lns = lns1 + lns2 + lns3 + lns4
labs = [l.get_label() for l in lns]
ax_clustering.legend(lns, labs, loc=0)
ax_clustering.grid()
ax_clustering.set_xlabel("epoch(s)")
ax_clustering.plot()
fig_dist = plt.figure()
ax_dist_mean = fig_dist.add_subplot(1, 1, 1)
ax_dist_mean.set_title(data_name + ", " + "Noise=" + str(args.noisy_training) + ", RobustLoss=" + str(
args.robust * args.switching_time) + ", neg_prop=" + str(args.neg_prop))
lns1 = ax_dist_mean.plot(x, pos_dist_mean_list, label='pos. dist')
lns2 = ax_dist_mean.plot(x, neg_dist_mean_list, label='neg. dist')
lns3 = ax_dist_mean.plot(x, false_neg_dist_mean_list, label='false neg. dist')
lns4 = ax_dist_mean.plot(x, true_neg_dist_mean_list, label='true neg. dist')
lns = lns1 + lns2 + lns3 + lns4
labs = [l.get_label() for l in lns]
ax_dist_mean.legend(lns, labs, loc=0)
ax_dist_mean.grid()
ax_dist_mean.set_xlabel("epoch(s)")
plt.show()
def main():
args = parser.parse_args()
data_name = ['Scene15', 'Caltech101', 'Reuters_dim10', 'NoisyMNIST-30000']
NetSeed = 64
# random.seed(NetSeed)
np.random.seed(NetSeed)
torch.backends.cudnn.deterministic = True
torch.manual_seed(NetSeed) # 为CPU设置随机种子
torch.cuda.manual_seed(NetSeed) # 为当前GPU设置随机种子
train_pair_loader, all_loader, divide_seed = loader(args.batch_size, args.neg_prop, args.aligned_prop,
args.noisy_training, data_name[args.data])
if args.data == 0:
model = MvCLNfcScene().to(args.gpu)
elif args.data == 1:
model = MvCLNfcCaltech().to(args.gpu)
elif args.data == 2:
model = MvCLNfcReuters().to(args.gpu)
elif args.data == 3:
model = MvCLNfcMNIST().to(args.gpu)
criterion = NoiseRobustLoss().to(args.gpu)
optimizer = torch.optim.Adam(model.parameters(), lr=args.learn_rate)
if not os.path.exists("./log/"):
os.mkdir("./log/")
path = os.path.join("./log/" + str(data_name[args.data]) + "_" + 'time=' + time.strftime('%Y-%m-%d %H:%M:%S',
time.localtime(
time.time())))
os.mkdir(path)
log_format = '%(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(path + '.txt')
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
logging.info(
"******** Training begin, use RobustLoss: {}*m, use gpu {}, batch_size = {}, unaligned_prop = {}, NetSeed = {}, DivSeed = {} ********".format(
args.robust * args.switching_time, args.gpu, args.batch_size, (1 - args.aligned_prop), NetSeed,
divide_seed))
CAR_list = []
acc_list, nmi_list, ari_list = [], [], []
train_time = 0
# train
for i in range(0, args.epochs + 1):
if i == 0:
with torch.no_grad():
pos_dist_mean, neg_dist_mean, false_neg_dist_mean, true_neg_dist_mean, epoch_time = train(
train_pair_loader, model, criterion, optimizer, i, args)
else:
pos_dist_mean, neg_dist_mean, false_neg_dist_mean, true_neg_dist_mean, epoch_time = train(train_pair_loader,
model, criterion,
optimizer, i,
args)
train_time += epoch_time
pos_dist_mean_list.append(pos_dist_mean.item())
neg_dist_mean_list.append(neg_dist_mean.item())
true_neg_dist_mean_list.append(true_neg_dist_mean.item())
false_neg_dist_mean_list.append(false_neg_dist_mean.item())
# test
v0, v1, pred_label, alignment_rate = tiny_infer(model, args.gpu, all_loader)
CAR_list.append(alignment_rate)
data = []
data.append(v0)
data.append(v1)
y_pred, ret = Clustering(data, pred_label)
if i % 10 == 0:
logging.info("******** testing ********")
logging.info(
"CAR={}, kmeans: acc={}, nmi={}, ari={}".format(round(alignment_rate, 4), ret['kmeans']['accuracy'],
ret['kmeans']['NMI'], ret['kmeans']['ARI']))
acc_list.append(ret['kmeans']['accuracy'])
nmi_list.append(ret['kmeans']['NMI'])
ari_list.append(ret['kmeans']['ARI'])
# plot(acc_list, nmi_list, ari_list, CAR_list, args, data_name[args.data])
logging.info('******** End, training time = {} s ********'.format(round(train_time, 2)))
if __name__ == '__main__':
main()