Skip to content

Latest commit

 

History

History
40 lines (35 loc) · 1.43 KB

README.md

File metadata and controls

40 lines (35 loc) · 1.43 KB

【AAAI-2020 ASAPooling】ASAP: Adaptive Structure Aware Pooling for Learning Hierarchical Graph Representations image

1.实验参数

Parameter Value
Batch size 128
Dataset 可选: DD、MUTAG、NCI1、NCI109、PROTEINS, etc
Dropout ratio 0.5
Epochs 10000
Exp name 自命名: DD_Glo、MUTAG_Hie, etc
Gpu index 0
Hid 128
Lr 0.0005
Model 可选: ASAPooling_Global、ASAPooling_Hierarchical
Patience 40
Pooling ratio 0.5
Seed 16
Test batch size 1
Weight decay 0.0001

2.运行程序
模型:ASAPooling_Global
数据集:DD

python main.py --exp_name=DD_Glo --dataset=DD --model=ASAPooling_Global

模型:ASAPooling_Hierarchical
数据集:PROTEINS

python main.py --exp_name=PROTEINS_Hie --dataset=PROTEINS --model=ASAPooling_Hierarchical

3.实验结果(8:1:1划分数据集,只做了一次实验的准确率,保留两位小数)

DD MUTAG NCI1 NCI109 PROTEINS
ASAPooling_Global 61.34 80.00 64.48 73.91 73.21
ASAPooling_Hierarchical 65.55 70.00 76.89 73.19 77.68