-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
136 lines (110 loc) · 4.89 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import torch
import numpy as np
from tqdm import tqdm
from model_util import get_optimizer_and_scheduler, get_dataloader
def train(logger, model, inputs, batch_size, output_dir,
learning_rate=1e-5,
warmup_steps=50,
num_training_steps=200,
gradient_accumulation_steps=1,
max_grad_norm=1.0,
eval_period=20,
prompt_tune=False,
head_tune=False,
transform_tune=False):
optimizer, scheduler = get_optimizer_and_scheduler(
"adamw",
model,
learning_rate=learning_rate,
warmup_steps=warmup_steps,
num_training_steps=num_training_steps)
dataloader = get_dataloader(inputs, batch_size, is_training=True)
n_trainable_params = len([param for param in model.parameters() if param.requires_grad])
n_gpus = torch.cuda.device_count()
logger.info("Training {} parameters on {} examples for {} steps using {} GPUs".format(
n_trainable_params, len(inputs["input_ids"]), num_training_steps, n_gpus))
model.train()
global_step = 0
train_losses = []
best_accuracy = -1
stop_training=False
logger.info("Start training")
for epoch in range(num_training_steps):
for batch in dataloader:
global_step += 1
input_ids=batch[0].cuda()
attention_mask=batch[1].cuda()
token_type_ids=batch[2].cuda()
if len(batch)==3:
labels=None
else:
labels=batch[3].cuda()
loss = run_model(model, input_ids, attention_mask, token_type_ids, labels=labels)
loss = loss.mean()
if torch.isnan(loss).data:
stop_training=True
break
train_losses.append(loss.detach().cpu())
loss.backward()
if global_step % gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
optimizer.step() # We have accumulated enought gradients
model.zero_grad()
if scheduler is not None:
scheduler.step()
if global_step % eval_period == 0:
if prompt_tune:
keys = ["transformer.wte.new_embed.weight"]
model_state_dict = {key: model.state_dict()[key if n_gpus==1 else "module."+key].cpu() for key in keys}
elif head_tune:
keys = ["lm_head.my_lm_head.weight"]
model_state_dict = {key: model.state_dict()[key if n_gpus==1 else "module."+key].cpu() for key in keys}
elif transform_tune:
keys = ["lm_head.transform.weight"]
model_state_dict = {key: model.state_dict()[key if n_gpus==1 else "module."+key].cpu() for key in keys}
else:
model_state_dict = {k:v.cpu() for (k, v) in model.state_dict().items()}
torch.save(model_state_dict,
os.path.join(output_dir, "model-{}.pt".format(global_step)))
logger.info("Saving model at global_step=%d (train loss %.2f)" % \
(global_step, np.mean(train_losses)))
train_losses = []
if global_step==num_training_steps:
break
if global_step==num_training_steps:
break
logger.info("Finish training")
def inference(model, inputs, batch_size, return_logits=False):
dataloader = get_dataloader(inputs, batch_size, is_training=False)
all_losses = []
for batch in tqdm(dataloader):
input_ids=batch[0].cuda()
attention_mask=batch[1].cuda()
token_type_ids=batch[2].cuda()
if len(batch)==3:
labels=None
else:
labels=batch[3].cuda()
with torch.no_grad():
loss = run_model(model, input_ids, attention_mask, token_type_ids,
labels=labels, return_logits=return_logits)
all_losses += loss.cpu().detach().numpy().tolist()
return all_losses
def run_model(model, input_ids, attention_mask, token_type_ids,
labels=None, return_logits=False):
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
# outputs = model(input_ids=input_ids)
logits = outputs.logits[..., :-1, :].contiguous()
if return_logits:
softmax = torch.nn.Softmax(dim=-1)
return -torch.log(softmax(logits))
if labels is None:
labels = input_ids
labels = labels[..., 1:].contiguous()
label_mask = token_type_ids[..., 1:].contiguous()
loss_fct = torch.nn.CrossEntropyLoss(reduction="none")
losses = loss_fct(logits.view(-1, logits.size(-1)),
labels.view(-1)) # [batch_size, length]
losses = losses.view(logits.size(0), logits.size(1)) * label_mask
return torch.sum(losses, axis=1) / torch.sum(label_mask, axis=1)