-
Notifications
You must be signed in to change notification settings - Fork 102
/
Copy pathmatrix.py
272 lines (254 loc) · 10.2 KB
/
matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import colorsys # Polygon regions.
from PIL import Image, ImageChops
from pprint import pprint
import cv2 # Polygon regions.
import numpy as np
import PIL
import torch
SPLROW = ";"
SPLCOL = ","
KEYROW = "ADDROW"
KEYCOL = "ADDCOL"
KEYBASE = "ADDBASE"
KEYCOMM = "ADDCOMM"
KEYBRK = "BREAK"
NLN = "\n"
DKEYINOUT = { # Out/in, horizontal/vertical or row/col first.
("out",False): KEYROW,
("in",False): KEYCOL,
("out",True): KEYCOL,
("in",True): KEYROW,
}
fidentity = lambda x: x
ffloatd = lambda c: (lambda x: floatdef(x,c))
fspace = lambda x: " {} ".format(x)
fcountbrk = lambda x: x.count(KEYBRK)
fint = lambda x: int(x)
def floatdef(x, vdef):
"""Attempt conversion to float, use default value on error.
Mainly for empty ratios, double commas.
"""
try:
return float(x)
except ValueError:
print("'{}' is not a number, converted to {}".format(x,vdef))
return vdef
class Region():
"""Specific Region used to split a layer to single prompts."""
def __init__(self, st, ed, base, breaks):
"""Range with start and end values, base weight and breaks count for context splitting."""
self.start = st # Range for the cell (cols only).
self.end = ed
self.base = base # How much of the base prompt is applied (difference).
self.breaks = breaks # How many unrelated breaks the prompt contains.
class Row():
"""Row containing cell refs and its own ratio range."""
def __init__(self, st, ed, cols):
"""Range with start and end values, base weight and breaks count for context splitting."""
self.start = st # Range for the row.
self.end = ed
self.cols = cols # List of cells.
def is_l2(l):
return isinstance(l[0],list)
def l2_count(l):
cnt = 0
for row in l:
cnt + cnt + len(row)
return cnt
def list_percentify(l):
"""
Convert each row in L2 to relative part of 100%.
Also works on L1, applying once globally.
"""
lret = []
if is_l2(l):
for row in l:
# row2 = [float(v) for v in row]
row2 = [v / sum(row) for v in row]
lret.append(row2)
else:
row = l[:]
# row2 = [float(v) for v in row]
row2 = [v / sum(row) for v in row]
lret = row2
return lret
def list_cumsum(l):
"""
Apply cumsum to L2 per row, ie newl[n] = l[0:n].sum .
Works with L1.
Actually edits l inplace, idc.
"""
lret = []
if is_l2(l):
for row in l:
for (i,v) in enumerate(row):
if i > 0:
row[i] = v + row[i - 1]
lret.append(row)
else:
row = l[:]
for (i,v) in enumerate(row):
if i > 0:
row[i] = v + row[i - 1]
lret = row
return lret
def list_rangify(l):
"""
Merge every 2 elems in L2 to a range, starting from 0.
"""
lret = []
if is_l2(l):
for row in l:
row2 = [0] + row
row3 = []
for i in range(len(row2) - 1):
row3.append([row2[i],row2[i + 1]])
lret.append(row3)
else:
row2 = [0] + l
row3 = []
for i in range(len(row2) - 1):
row3.append([row2[i],row2[i + 1]])
lret = row3
return lret
def ratiosdealer(split_ratio2,split_ratio2r):
split_ratio2 = list_percentify(split_ratio2)
split_ratio2 = list_cumsum(split_ratio2)
split_ratio2 = list_rangify(split_ratio2)
split_ratio2r = list_percentify(split_ratio2r)
split_ratio2r = list_cumsum(split_ratio2r)
split_ratio2r = list_rangify(split_ratio2r)
return split_ratio2,split_ratio2r
def round_dim(x,y):
"""Return division of two numbers, rounding 0.5 up.
Seems that dimensions which are exactly 0.5 are rounded up - see 680x488, second iter.
A simple mod check should get the job done.
If not, can always brute force the divisor with +-1 on each of h/w.
"""
return x // y + (x % y >= y // 2)
def keyconverter(self,split_ratio,usebase):
'''convert BREAKS to ADDCOMM/ADDBASE/ADDCOL/ADDROW'''
if SPLROW not in split_ratio: # Commas only - interpret as 1d.
split_ratio2 = split_l2(split_ratio, SPLROW, SPLCOL, map_function = ffloatd(1))
split_ratio2r = [1]
else:
(split_ratio2r,split_ratio2) = split_l2(split_ratio, SPLROW, SPLCOL,
indsingles = True, map_function = ffloatd(1))
(split_ratio2,split_ratio2r) = ratiosdealer(split_ratio2,split_ratio2r)
#print(keychanger,p.prompt)
txtkey = fspace(DKEYINOUT[("in", False)]) + NLN
lkeys = [txtkey.join([""] * len(cell)) for cell in split_ratio2]
txtkey = fspace(DKEYINOUT[("out", False)]) + NLN
template = txtkey.join(lkeys)
if usebase:
template = fspace(KEYBASE) + NLN + template
changer = template.split(NLN)
changer = [l.strip() for l in changer]
keychanger=changer[:-1]
for change in keychanger:
if change == KEYBASE and KEYBASE in self.prompt: continue
self.prompt= self.prompt.replace(KEYBRK,change,1)
def split_l2(s, key_row, key_col, indsingles = False, map_function = fidentity, split_struct = None):
lret = []
if split_struct is None:
lrows = s.split(key_row)
lrows = [row.split(key_col) for row in lrows]
# print(lrows)
for r in lrows:
cell = [map_function(x) for x in r]
lret.append(cell)
if indsingles:
lsingles = [row[0] for row in lret]
lcells = [row[1:] if len(row) > 1 else row for row in lret]
lret = (lsingles,lcells)
else:
lrows = str(s).split(key_row)
r = 0
lcells = []
lsingles = []
vlast = 1
for row in lrows:
row2 = row.split(key_col)
row2 = [map_function(x) for x in row2]
vlast = row2[-1]
indstop = False
while not indstop:
if (r >= len(split_struct) # Too many cell values, ignore.
or (len(row2) == 0 and len(split_struct) > 0)): # Cell exhausted.
indstop = True
if not indstop:
if indsingles: # Singles split.
lsingles.append(row2[0]) # Row ratio.
if len(row2) > 1:
row2 = row2[1:]
if len(split_struct[r]) >= len(row2): # Repeat last value.
indstop = True
broadrow = row2 + [row2[-1]] * (len(split_struct[r]) - len(row2))
r = r + 1
lcells.append(broadrow)
else: # Overfilled this row, cut and move to next.
broadrow = row2[:len(split_struct[r])]
row2 = row2[len(split_struct[r]):]
r = r + 1
lcells.append(broadrow)
# If not enough new rows, repeat the last one for entire base, preserving structure.
cur = len(lcells)
while cur < len(split_struct):
lcells.append([vlast] * len(split_struct[cur]))
cur = cur + 1
lret = lcells
if indsingles:
lsingles = lsingles + [lsingles[-1]] * (len(split_struct) - len(lsingles))
lret = (lsingles,lcells)
return lret
def matrixdealer(self, split_ratio, baseratio):
# print(split_ratio, baseratio)
prompt = self.prompt
if KEYBASE in prompt: prompt = prompt.split(KEYBASE,1)[1]
if (KEYCOL in prompt.upper() or KEYROW in prompt.upper()):
breaks = prompt.count(KEYROW) + prompt.count(KEYCOL) + int(self.usebase)
# Prompt anchors, count breaks between special keywords.
# print('prompt:', prompt)
lbreaks = split_l2(prompt, KEYROW, KEYCOL, map_function = fcountbrk)
# print('lbreaks', lbreaks)
if (SPLROW not in split_ratio and (KEYROW in prompt.upper()) != (KEYCOL in prompt.upper())):
# By popular demand, 1d integrated into 2d.
# This works by either adding a single row value (inner),
# or setting flip to the reverse (outer).
# Only applies when using just ADDROW / ADDCOL keys, and commas in ratio.
split_ratio = "1" + SPLCOL + split_ratio
(split_ratio2r,split_ratio2) = split_l2(split_ratio, SPLROW, SPLCOL, indsingles = True,
map_function = ffloatd(1), split_struct = lbreaks)
else: # Standard ratios, split to rows and cols.
(split_ratio2r,split_ratio2) = split_l2(split_ratio, SPLROW, SPLCOL, indsingles = True,
map_function = ffloatd(1), split_struct = lbreaks)
print('split_ratio2r', split_ratio2r)
print('split_ratio2', split_ratio2)
# More like "bweights", applied per cell only.
baseratio2 = split_l2(baseratio, SPLROW, SPLCOL, map_function = ffloatd(0), split_struct = lbreaks)
print(baseratio2)
(split_ratio,split_ratior) = ratiosdealer(split_ratio2,split_ratio2r)
baseratio = baseratio2
# Merge various L2s to cells and rows.
drows = []
for r,_ in enumerate(lbreaks):
dcells = []
for c,_ in enumerate(lbreaks[r]):
d = Region(split_ratio[r][c][0], split_ratio[r][c][1], baseratio[r][c], lbreaks[r][c])
dcells.append(d)
drow = Row(split_ratior[r][0], split_ratior[r][1], dcells)
drows.append(drow)
self.split_ratio = drows
self.baseratio = baseratio
# class test:
# def __init__(self, prompt,split_ratio=None,baseratio=0.2,usebase=False):
# self.prompt = prompt
# self.split_ratio = split_ratio
# self.baseratio = 0.2
# self.usebase = usebase
# test_prompt='a girl BREAK a cute boy BREAK a dog BREAK a tree.'
# split_ratio='1,1,1;1,1,1'
# x=test(test_prompt,split_ratio)
# keyconverter(x,split_ratio,usebase=False)
# print(x.prompt)
# matrixdealer(x, split_ratio, 0.2)