-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
638 lines (489 loc) · 21.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
"""Entry point to train the models and evaluate them.
This should be called by `python main.py <conf>` where <conf> sets all configs from the cli, see
the file `config/main.yaml` for details about the configs. or use `python main.py -h`.
"""
from __future__ import annotations
import copy
import logging
import os
import shutil
import traceback
from pathlib import Path
from typing import Any, Optional, Type
import sys
import hydra
import matplotlib.pyplot as plt
import omegaconf
import pandas as pd
import pytorch_lightning as pl
import torch
from hydra import compose
from omegaconf import Container, OmegaConf
from pytorch_lightning.loggers import CSVLogger, WandbLogger
from pytorch_lightning.plugins.environments import SLURMEnvironment
from issl import ISSLModule, Predictor
from issl.losses.dino import MAWeightUpdate
from issl.helpers import check_import
from utils.cluster.nlprun import nlp_cluster
from utils.data import get_Datamodule
from utils.helpers import (
NamespaceMap,
apply_representor,
cfg_save,
format_resolver,
get_latest_match,
list2str_resolver,
log_dict,
omegaconf2namespace,
remove_rf,
replace_keys,
)
try:
# noinspection PyUnresolvedReferences
import wandb
except ImportError:
pass
logger = logging.getLogger(__name__)
BEST_CHECKPOINT = "best_{stage}.ckpt"
RESULTS_FILE = "results_{stage}.csv"
LAST_CHECKPOINT = "last.ckpt"
FILE_END = "end.txt"
CONFIG_FILE = "config.yaml"
@hydra.main(config_name="main", config_path="config", version_base="1.1")
def main_except(cfg):
try:
if cfg.is_nlp_cluster:
with nlp_cluster(cfg):
main(cfg)
else:
main(cfg)
except SystemExit:
logger.exception("Failed this error:")
# submitit returns sys.exit when SIGTERM. This will be run before exiting.
smooth_exit(cfg)
def main(cfg):
logger.info(os.uname().nodename)
############## STARTUP ##############
logger.info("Stage : Startup")
begin(cfg)
############## REPRESENTATION LEARNING ##############
logger.info("Stage : Representor")
stage = "representor"
repr_cfg = set_cfg(cfg, stage)
repr_datamodule = instantiate_datamodule_(repr_cfg)
repr_cfg = omegaconf2namespace(repr_cfg) # ensure real python types
is_force_retrain = repr_cfg.representor.is_force_retrain
is_train = repr_cfg.representor.is_train or is_force_retrain
if is_train and not is_trained(repr_cfg, stage, is_force_retrain=is_force_retrain):
representor = ISSLModule(hparams=repr_cfg)
repr_trainer = get_trainer(repr_cfg, dm=repr_datamodule, is_representor=True)
logger.info("Train representor ...")
fit_(repr_trainer, representor, repr_datamodule, repr_cfg)
save_pretrained(repr_cfg, repr_trainer, stage)
else:
logger.info("Load pretrained representor ...")
representor = load_pretrained(repr_cfg, ISSLModule, stage)
repr_trainer = get_trainer(repr_cfg, is_representor=True)
placeholder_fit(repr_trainer, representor)
repr_cfg.evaluation.representor.ckpt_path = None # eval loaded model
if repr_cfg.evaluation.representor.is_evaluate:
logger.info("Evaluate representor ...")
evaluate(
repr_trainer, repr_datamodule, repr_cfg, stage, model=representor
)
finalize_stage_(
stage,
repr_cfg,
is_save_best=True,
)
del repr_datamodule # not used anymore and can be large
############## DOWNSTREAM PREDICTOR ##############
for task in cfg.downstream_task.all_tasks:
logger.info(f"Stage : Predict {task}")
stage = "predictor"
pred_cfg = set_downstream_task(cfg, task)
pred_cfg = set_cfg(pred_cfg, stage)
pred_datamodule = instantiate_datamodule_(
pred_cfg, pre_representor=repr_trainer
)
pred_cfg = omegaconf2namespace(pred_cfg)
is_force_retrain = pred_cfg.predictor.is_force_retrain
is_train = pred_cfg.predictor.is_train or is_force_retrain
if is_train and not is_trained(pred_cfg, stage, is_force_retrain=is_force_retrain):
predictor = Predictor(hparams=pred_cfg)
pred_trainer = get_trainer(pred_cfg, is_representor=False)
logger.info(f"Train predictor for {task} ...")
fit_(pred_trainer, predictor, pred_datamodule, pred_cfg)
save_pretrained(pred_cfg, pred_trainer, stage)
else:
logger.info(f"Load pretrained predictor for {task} ...")
predictor = load_pretrained(pred_cfg, Predictor, stage)
pred_trainer = get_trainer(pred_cfg, is_representor=False)
placeholder_fit(pred_trainer, predictor)
pred_cfg.evaluation.predictor.ckpt_path = None # eval loaded model
if pred_cfg.evaluation.predictor.is_evaluate:
logger.info(f"Evaluate predictor for {task} ...")
evaluate(
pred_trainer,
pred_datamodule,
pred_cfg,
stage,
model=predictor
)
save_end_file(pred_cfg)
finalize_stage_(
stage,
pred_cfg,
)
############## SHUTDOWN ##############
finalize(repr_cfg)
def begin(cfg: Container) -> None:
"""Script initialization."""
pl.seed_everything(cfg.seed)
cfg.paths.work = str(Path.cwd())
try:
# if continuing from single job you shouldn't append run to the end
continue_job = cfg.continue_job #! used to trigger the try except
if cfg.is_rm_job_num:
# in case the original job was actually without a job num
cfg.job_id = "_".join(str(cfg.job_id).split("_")[:-1])
except:
pass
logger.info(f"Workdir : {cfg.paths.work}.")
logger.info(f"Job id : {cfg.job_id}.")
def get_stage_name(stage: str) -> str:
"""Return the correct stage name given the mode (representor, predictor, ...)"""
return stage[:4]
def set_downstream_task(cfg: Container, task: str):
"""Set the downstream task."""
cfg = copy.deepcopy(cfg) # not inplace
with omegaconf.open_dict(cfg):
cfg.downstream_task = compose( config_name="main", overrides=[f"+downstream_task={task}"] ).downstream_task
cfg.update_trainer_pred.max_epochs = int(cfg.update_trainer_pred.max_epochs * cfg.downstream_task.epochs_mult_factor)
# TODO should clean that but not sure how. Currently:
# 1/ reload hydra config with the current data as dflt config
overrides = [f"+data@dflt_data_pred={cfg.downstream_task.data}",f"+predictor@dflt_predictor={cfg.downstream_task.predictor}"]
if "optimizer" in cfg.downstream_task:
overrides += [f"optimizer@dflt_optimizer_pred={cfg.downstream_task.optimizer}"] # no + because there is a default
if "scheduler" in cfg.downstream_task:
overrides += [f"scheduler@dflt_scheduler_pred={cfg.downstream_task.scheduler}"] # no + because there is a default
dflts = compose(config_name="main", overrides=overrides)
cfg.dflt_predictor = dflts.dflt_predictor
cfg.dflt_data_pred = dflts.dflt_data_pred
cfg.dflt_optimizer_pred = dflts.dflt_optimizer_pred
cfg.dflt_scheduler_pred = dflts.dflt_scheduler_pred
# 2/ add any overrides
cfg.predictor = OmegaConf.merge(cfg.dflt_predictor, cfg.predictor)
cfg.data_pred = OmegaConf.merge(cfg.dflt_data_pred, cfg.data_pred)
cfg.optimizer_pred = OmegaConf.merge(cfg.dflt_optimizer_pred, cfg.optimizer_pred)
cfg.scheduler_pred = OmegaConf.merge(cfg.dflt_scheduler_pred, cfg.scheduler_pred)
if "max_epochs" in cfg.downstream_task:
cfg.update_trainer_pred.max_epochs = cfg.downstream_task.max_epochs
if "batch_size" in cfg.downstream_task:
cfg.data_pred.kwargs.batch_size = cfg.downstream_task.batch_size
if "add_pred" in cfg.downstream_task:
cfg.other.add_pred = cfg.other.add_pred
if cfg.data_pred.is_copy_repr:
name = cfg.data_repr.name
if cfg.data_repr.name == "stl10_unlabeled":
# stl10_unlabeled goes to stl10 at test time
name = "stl10"
cfg.data_pred.dataset = "stl10"
cfg.data_pred.name = cfg.data_pred.name.format(name=name)
cfg.data_pred = OmegaConf.merge(cfg.data_repr, cfg.data_pred)
cfg.downstream_task.name = task
return cfg
def set_cfg(cfg: Container, stage: str) -> Container:
"""Set the configurations for a specific mode."""
cfg = copy.deepcopy(cfg) # not inplace
with omegaconf.open_dict(cfg):
cfg.stage = get_stage_name(stage)
cfg.long_name = cfg[f"long_name_{cfg.stage}"]
if stage == "representor":
# not yet instantiated because doesn't know the data and predictor yet
del cfg[f"long_name_pred"]
del cfg.evaluation[f"predictor"]
cfg.data = OmegaConf.merge(cfg.data, cfg[f"data_{cfg.stage}"])
cfg.trainer = OmegaConf.merge(cfg.trainer, cfg[f"update_trainer_{cfg.stage}"])
cfg.checkpoint = OmegaConf.merge(cfg.checkpoint, cfg[f"checkpoint_{cfg.stage}"])
if stage == "representor":
cfg.task = cfg.data.name
elif stage == "predictor":
cfg.task = cfg.downstream_task.name
logger.info(f"Name : {cfg.long_name}.")
# rescaling learning rate depending on batch size
lr_stage = "issl" if cfg.stage == "repr" else cfg.stage
batch_size = cfg.data.kwargs.batch_size
if batch_size != 256:
new_lr = cfg[f"optimizer_{lr_stage}"].kwargs.lr * batch_size / 256
logger.info(f"Rescaling lr to {new_lr}.")
cfg[f"optimizer_{lr_stage}"].kwargs.lr = new_lr
# make sure all paths exist
for name, path in cfg.paths.items():
if isinstance(path, str):
Path(path).mkdir(parents=True, exist_ok=True)
logger.info(f"Checkpoint path is {cfg.paths.checkpoint}.")
logger.info(f"Results path is {cfg.paths.results}.")
Path(cfg.paths.pretrained.save).mkdir(parents=True, exist_ok=True)
file_end_results = Path(cfg.paths.results) / f"{cfg.stage}_{FILE_END}"
if file_end_results.is_file() and not cfg[stage].is_force_retrain:
logger.info(f"Skipping most of {cfg.stage} as {file_end_results} exists.")
with omegaconf.open_dict(cfg):
if stage == "representor":
cfg.representor.is_train = False
cfg.evaluation.representor.is_evaluate = False
cfg.data_repr.kwargs.is_data_in_memory = False
elif stage == "predictor":
cfg.predictor.is_train = False
cfg.evaluation.predictor.is_evaluate = False
cfg.data_pred.kwargs.is_data_in_memory = False
else:
raise ValueError(f"Unknown stage={stage}.")
return cfg
def instantiate_datamodule_(
cfg: Container, pre_representor: Optional[pl.Trainer] = None
) -> pl.LightningDataModule:
"""Instantiate dataset."""
cfgd = cfg.data
cfgt = cfg.trainer
Datamodule = get_Datamodule(cfgd.dataset)
datamodule = Datamodule(**cfgd.kwargs)
datamodule.prepare_data()
datamodule.setup()
limit_train_batches = cfgt.get("limit_train_batches", 1)
if limit_train_batches > 1:
# if limit_train_batches is in number of batches
cfgd.length = cfgd.kwargs.batch_size * limit_train_batches
else:
# if limit_train_batches is in percentage
cfgd.length = int(len(datamodule.train_dataset) * limit_train_batches)
cfgd.shape = datamodule.shape
cfgd.target_dim = datamodule.target_dim
cfgd.aux_shape = datamodule.aux_shape
cfgd.aux_target = datamodule.aux_target
cfgd.normalized = datamodule.normalized
if pre_representor is not None:
datamodule = apply_representor(
datamodule,
pre_representor,
is_eval_on_test=cfg.evaluation.is_eval_on_test,
**cfgd.kwargs,
)
datamodule.prepare_data()
datamodule.setup()
# changes due to the representations
cfgd.shape = datamodule.train_dataset.X.shape[-1]
n_devices = max(cfgt.devices * cfgt.num_nodes, 1)
eff_batch_size = n_devices * cfgd.kwargs.batch_size
cfgd.n_train_batches = 1 + cfgd.length // eff_batch_size
cfgd.max_steps = cfgt.max_epochs * cfgd.n_train_batches
return datamodule
def get_callbacks(
cfg: NamespaceMap, is_representor: bool, dm: pl.LightningDataModule=None
) -> list[pl.callbacks.Callback]:
"""Return list of callbacks."""
callbacks = []
if is_representor:
if hasattr(cfg.decodability, "is_ema") and cfg.decodability.is_ema:
# use momentum contrastive teacher, e.g. DINO
callbacks += [MAWeightUpdate()]
callbacks += [pl.callbacks.ModelCheckpoint(**cfg.checkpoint.kwargs)]
for name, kwargs in cfg.callbacks.items():
try:
if kwargs.is_use:
callback_kwargs = kwargs.get("kwargs", {})
if callback_kwargs.get("dm", False):
callback_kwargs["dm"] = dm
Callback = getattr(pl.callbacks, name)
new_callback = Callback(**callback_kwargs)
callbacks.append(new_callback)
except AttributeError:
pass
return callbacks
def get_logger(cfg: NamespaceMap) -> pl.loggers.base.LightningLoggerBase:
"""Return correct logger."""
kwargs = cfg.logger.kwargs
# useful for different modes (e.g. wandb_kwargs)
kwargs.update(cfg.logger.get(f"{cfg.logger.name}_kwargs", {}))
if cfg.logger.name == "wandb":
check_import("wandb", "WandbLogger")
# noinspection PyBroadException
try:
pl_logger = WandbLogger(**kwargs)
except Exception:
cfg.logger.kwargs.offline = True
pl_logger = WandbLogger(**kwargs)
try:
# try to save all the current code
pl_logger.experiment.log_code(cfg.paths.base_dir)
except Exception:
pass
elif cfg.logger.name is None:
pl_logger = False
else:
raise ValueError(f"Unknown logger={cfg.logger.name}.")
return pl_logger
def get_trainer(
cfg: NamespaceMap, is_representor: bool, dm: pl.LightningDataModule=None,
) -> pl.Trainer:
"""Instantiate trainer."""
kwargs = dict(**cfg.trainer)
# TRAINER
trainer = pl.Trainer(
plugins=[SLURMEnvironment(auto_requeue=False)], # lightning automatically detects slurm and tries to handle checkpointing but we want outside #6389
logger=get_logger(cfg),
callbacks=get_callbacks(cfg, is_representor, dm=dm),
**kwargs,
)
return trainer
def fit_(
trainer: pl.Trainer,
module: pl.LightningModule,
datamodule: pl.LightningDataModule,
cfg: NamespaceMap,
):
"""Fit the module."""
kwargs = dict()
# Resume training ?
ckpt_dir = Path(cfg.checkpoint.kwargs.dirpath)
if cfg.checkpoint.is_load_last:
last_checkpoint = ckpt_dir / LAST_CHECKPOINT
else:
# don't use last.ckpt (typically if there was an issue with saving)
last_checkpoint = get_latest_match(ckpt_dir / "epoch*.ckpt")
if last_checkpoint.exists():
kwargs["ckpt_path"] = str(last_checkpoint)
logger.info(f"Continuing run from {last_checkpoint}")
trainer.fit(module, datamodule=datamodule, **kwargs)
def placeholder_fit(
trainer: pl.Trainer, module: pl.LightningModule
) -> None:
"""Necessary setup of trainer before testing if you don't fit it."""
trainer.model = module
def save_pretrained(
cfg: NamespaceMap, trainer: pl.Trainer, stage: str,
) -> None:
"""Send best checkpoint to main directory."""
# restore best checkpoint
best = trainer.checkpoint_callback.best_model_path
trainer._checkpoint_connector.resume_start(best)
# save
dest_path = Path(cfg.paths.pretrained.save)
dest_path.mkdir(parents=True, exist_ok=True)
filename = BEST_CHECKPOINT.format(stage=stage)
ckpt_path = dest_path / filename
trainer.save_checkpoint(ckpt_path, weights_only=True)
logger.info(f"Saved best checkpoint to {ckpt_path}.")
def is_trained(cfg: NamespaceMap, stage: str, is_force_retrain: bool=False) -> bool:
"""Test whether already saved the checkpoint, if yes then you already trained but might have preempted."""
pretrained_path = Path(cfg.paths.pretrained.save)
filename = BEST_CHECKPOINT.format(stage=stage)
if is_force_retrain and (pretrained_path / filename).is_file():
results_path = Path(cfg.paths.results)
ckpt_path = Path(cfg.checkpoint.kwargs.dirpath)
log_path = Path(cfg.paths.logs)
logger.info(f"Forcing the retraining of {stage}, even though {pretrained_path / filename} exists. Deleting {pretrained_path} and {results_path} and {ckpt_path} and {log_path}.")
remove_rf(pretrained_path, not_exist_ok=True)
remove_rf(results_path, not_exist_ok=True)
remove_rf(ckpt_path, not_exist_ok=True)
remove_rf(log_path, not_exist_ok=True)
pretrained_path.mkdir(parents=True)
results_path.mkdir(parents=True)
ckpt_path.mkdir(parents=True)
log_path.mkdir(parents=True)
return False
else:
return (pretrained_path / filename).is_file()
def load_pretrained(
cfg: NamespaceMap, Module: Optional[Type[pl.LightningModule]], stage: str, **kwargs
) -> pl.LightningModule:
"""Load the best checkpoint from the latest run that has the same name as current run."""
save_path = Path(cfg.paths.pretrained.load)
filename = BEST_CHECKPOINT.format(stage=stage)
# select the latest checkpoint matching the path
checkpoint = get_latest_match(save_path / filename)
loaded_module = Module.load_from_checkpoint(checkpoint, **kwargs)
return loaded_module
def evaluate(
trainer: pl.Trainer,
datamodule: pl.LightningDataModule,
cfg: NamespaceMap,
stage: str,
model: torch.nn.Module=None
):
"""Evaluate the trainer by logging all the metrics from the test set from the best model."""
to_save = dict()
try:
if cfg.checkpoint.name == "last":
ckpt_path = None
else:
ckpt_path = cfg.evaluation[stage].ckpt_path
eval_dataloader = datamodule.eval_dataloader(cfg.evaluation.is_eval_on_test)
# logging correct stage
trainer.lightning_module.stage = cfg.stage
test_res = trainer.test(dataloaders=eval_dataloader, ckpt_path=ckpt_path, model=model)[0]
# ensure that select only correct stage
test_res = {k: v for k, v in test_res.items() if f"/{cfg.stage}/" in k}
log_dict(trainer, test_res, is_param=False)
to_save["test"] = replace_keys(test_res, "test/", "", is_prfx=True)
# save results
results = pd.DataFrame.from_dict(to_save)
filename = RESULTS_FILE.format(stage=stage)
path = Path(cfg.paths.results) / filename
results.to_csv(path, header=True, index=True)
logger.info(f"Logging results to {path}.")
except:
logger.exception("Failed to evaluate. Skipping this error:")
def save_end_file(cfg):
""""save end file to make sure that you don't retrain if preemption"""
file_end = Path(cfg.paths.results) / f"{cfg.stage}_{FILE_END}"
file_end.touch(exist_ok=True)
logger.info(f"Saved {file_end}.")
# save config to results
cfg_save(cfg, Path(cfg.paths.results) / f"{cfg.stage}_{CONFIG_FILE}")
def finalize_stage_(
stage: str,
cfg: NamespaceMap,
is_save_best: bool = False,
) :
"""Finalize the current stage."""
logger.info(f"Finalizing {stage}.")
# no checkpoints during representation
assert (
cfg.checkpoint.kwargs.dirpath != cfg.paths.pretrained.save
), "This will remove desired checkpoints"
# remove all checkpoints as best is already saved elsewhere
remove_rf(cfg.checkpoint.kwargs.dirpath, not_exist_ok=True)
# don't keep the pretrained model
if not is_save_best and "hub" not in cfg.paths.pretrained.save:
remove_rf(cfg.paths.pretrained.save, not_exist_ok=True)
save_end_file(cfg)
def finalize(cfg: NamespaceMap):
"""Finalizes the script."""
logger.info("Stage : Shutdown")
plt.close("all")
if cfg.logger.name == "wandb" and wandb.run is not None:
wandb.run.finish() # finish the run if still on
logger.info("Finished.")
logging.shutdown()
def smooth_exit(cfg: NamespaceMap):
"""Everything to run in case you get preempted / exit."""
training_chckpnt = Path(cfg.paths.checkpoint)
exit_chckpnt = Path(cfg.paths.exit_checkpoint)
if training_chckpnt != exit_chckpnt:
# if you want the checkpoints to be saved somewhere else in case exit
exit_chckpnt.parent.mkdir(exist_ok=True, parents=True)
shutil.copytree(training_chckpnt, exit_chckpnt, dirs_exist_ok=True)
logging.info(f"Moved checkpoint to {exit_chckpnt} for smooth exit.")
if __name__ == "__main__":
OmegaConf.register_new_resolver("format", format_resolver)
OmegaConf.register_new_resolver("list2str", list2str_resolver)
try:
main_except()
except:
logger.exception("Failed this error:")
# exit gracefully, so wandb logs the problem
print(traceback.print_exc(), file=sys.stderr)
exit(1)
finally:
wandb.finish()