-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluator_qg.py
241 lines (189 loc) · 8.85 KB
/
evaluator_qg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os
import sys
import json
import collections
import math
import numpy as np
from sklearn.metrics import accuracy_score, confusion_matrix
import spacy
nlp = spacy.load('en_core_web_md')
class ClassificationEvaluator:
def __init__(self, labels=None):
self.labels = labels
def evaluate(self, y_true, y_pred):
if not self.labels:
self.labels = list(set(y_true))
# micro_accuracy = sum([y_t == y_p for y_t, y_p in zip(y_true, y_pred)]) / len(y_true)
micro_accuracy = accuracy_score(y_true, y_pred)
results = {}
results["micro_accuracy"] = float("{0:.2f}".format(micro_accuracy*100)) #int(100 * micro_accuracy) / 100
conf_mat = confusion_matrix(y_true, y_pred, labels=self.labels)
conf_mat_norm = conf_mat.astype('float') / conf_mat.sum(axis=1)[:, np.newaxis]
macro_accuracy = np.mean([conf_mat_norm[i][i] for i in range(conf_mat_norm.shape[0])])
results["macro_accuracy"] = float("{0:.2f}".format(macro_accuracy*100)) #int(100 * macro_accuracy) / 100
results["conf_mat"] = conf_mat.tolist()
return results
class MoreEvaluator:
def __init__(self, max_bleu_order=4, bleu_smoothing=True):
self.max_bleu_order = max_bleu_order
self.bleu_smoothing = bleu_smoothing
def evaluate(self, y_true, y_pred):
results = {}
bleu_scores = [compute_bleu([[y.split()] for y in y_true], [y.split() for y in y_pred],
max_order=bleu_order, smooth=self.bleu_smoothing)[0]
for bleu_order in range(1, self.max_bleu_order + 1)]
for bleu_order, bleu_score in enumerate(bleu_scores):
results["bleu_" + str(bleu_order + 1)] = float("{0:.2f}".format(bleu_score*100))
return results
class CombinedEvaluator:
def __init__(self, labels=['yes', 'no', 'more', 'irrelevant'], accuracy_targets=['yes', 'no', 'irrelevant']):
self.labels = labels
self.accuracy_targets = accuracy_targets
self.classification_evaluator = ClassificationEvaluator(labels=labels)
self.more_evaluator = MoreEvaluator()
def replace_follow_up_with_more(self, y_list):
return [y.lower() if y.lower() in self.accuracy_targets else 'more' for y in y_list]
def extract_follow_ups(self, y_true, y_pred):
extracted = [(y_t, y_p) for (y_t, y_p) in zip(y_true, y_pred) if
y_t.lower() not in self.labels and y_p.lower() not in self.labels]
if extracted:
return zip(*extracted)
else:
return [], []
def evaluate(self, y_true, y_pred):
# Classification
classification_y_true = self.replace_follow_up_with_more(y_true)
classification_y_pred = self.replace_follow_up_with_more(y_pred)
results = self.classification_evaluator.evaluate(classification_y_true, classification_y_pred)
# Follow Up Generation
num_true_follow_ups = len([y_t for y_t in y_true if y_t.lower() not in self.labels])
num_pred_follow_ups = len([y_p for y_p in y_pred if y_p.lower() not in self.labels])
generation_y_true, generation_y_pred = self.extract_follow_ups(y_true, y_pred)
print(f'{num_true_follow_ups} follow-ups in ground truth. {num_pred_follow_ups} follow-ups predicted | {len(generation_y_true)} follow-up questions used for BLEU evaluation.')
if generation_y_true and generation_y_pred:
results.update(self.more_evaluator.evaluate(generation_y_true, generation_y_pred))
else:
results.update({'bleu_{}'.format(i): 0. for i in range(1, 5)})
return results
def prepro(text):
doc = nlp(text, disable=['parser', 'tagger', 'ner'])
result = ""
for token in doc:
orth = token.text
if orth == "":
result += " "
elif orth == " ":
result += " "
else:
result += orth.lower() + " "
return result.strip().replace('\n', '')
def _get_ngrams(segment, max_order):
"""Extracts all n-grams upto a given maximum order from an input segment.
Args:
segment: text segment from which n-grams will be extracted.
max_order: maximum length in tokens of the n-grams returned by this
methods.
Returns:
The Counter containing all n-grams upto max_order in segment
with a count of how many times each n-gram occurred.
"""
ngram_counts = collections.Counter()
for order in range(1, max_order + 1):
for i in range(0, len(segment) - order + 1):
ngram = tuple(segment[i:i + order])
ngram_counts[ngram] += 1
return ngram_counts
def compute_bleu(reference_corpus, translation_corpus, max_order=4,
smooth=False):
"""Computes BLEU score of translated segments against one or more references.
Args:
reference_corpus: list of lists of references for each translation. Each
reference should be tokenized into a list of tokens.
translation_corpus: list of translations to score. Each translation
should be tokenized into a list of tokens.
max_order: Maximum n-gram order to use when computing BLEU score.
smooth: Whether or not to apply Lin et al. 2004 smoothing.
Returns:
3-Tuple with the BLEU score, n-gram precisions, geometric mean of n-gram
precisions and brevity penalty.
"""
matches_by_order = [0] * max_order
possible_matches_by_order = [0] * max_order
reference_length = 0
translation_length = 0
for (references, translation) in zip(reference_corpus,
translation_corpus):
reference_length += min(len(r) for r in references)
translation_length += len(translation)
merged_ref_ngram_counts = collections.Counter()
for reference in references:
merged_ref_ngram_counts |= _get_ngrams(reference, max_order)
translation_ngram_counts = _get_ngrams(translation, max_order)
overlap = translation_ngram_counts & merged_ref_ngram_counts
for ngram in overlap:
matches_by_order[len(ngram) - 1] += overlap[ngram]
for order in range(1, max_order + 1):
possible_matches = len(translation) - order + 1
if possible_matches > 0:
possible_matches_by_order[order - 1] += possible_matches
precisions = [0] * max_order
for i in range(0, max_order):
if smooth:
precisions[i] = ((matches_by_order[i] + 1.) /
(possible_matches_by_order[i] + 1.))
else:
if possible_matches_by_order[i] > 0:
precisions[i] = (float(matches_by_order[i]) /
possible_matches_by_order[i])
else:
precisions[i] = 0.0
if min(precisions) > 0:
p_log_sum = sum((1. / max_order) * math.log(p) for p in precisions)
geo_mean = math.exp(p_log_sum)
else:
geo_mean = 0
ratio = float(translation_length) / reference_length
if ratio > 1.0:
bp = 1.
else:
bp = math.exp(1 - 1. / ratio)
bleu = geo_mean * bp
return (bleu, precisions, bp, ratio, translation_length, reference_length)
def evaluate(ground_truths, predictions, mode='follow_ups'):
assert mode in ['', 'combined', 'follow_ups', 'classification'], "Mode not recognised"
# with open(gold_file, 'r') as f:
# ground_truths = json.load(f)
#
# with open(prediction_file, 'r') as f:
# predictions = json.load(f)
# Check if all IDs are aligned
# assert len(ground_truths) == len(predictions), "Predictions and ground truths have different sample sizes"
ground_truth_map = {g["utterance_id"]: g for g in ground_truths}
predictions_map = {p["utterance_id"]: p for p in predictions}
for k in ground_truth_map:
if k not in predictions_map:
predictions_map[k] = {'utterance_id': k, 'answer': 'missing'}
for gid in ground_truth_map:
assert gid in predictions_map
# Extract answers and prepro
ground_truths = []
predictions = []
for uid in ground_truth_map.keys():
ground_truths.append(prepro(ground_truth_map[uid]['answer']))
predictions.append(prepro(predictions_map[uid]['answer']))
if mode == 'follow_ups':
evaluator = MoreEvaluator()
results = evaluator.evaluate(ground_truths, predictions)
elif mode == 'classification':
evaluator = ClassificationEvaluator(labels=['yes', 'no', 'more', 'irrelevant'])
results = evaluator.evaluate(ground_truths, predictions)
else:
evaluator = CombinedEvaluator(labels=['yes', 'no', 'more', 'irrelevant'])
results = evaluator.evaluate(ground_truths, predictions)
return results
if __name__ == '__main__':
mode = 'combined'
prediction_file = sys.argv[1]
gold_file = sys.argv[2]
results = evaluate(gold_file, prediction_file, mode=mode)
print(results)