-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathgradio_text2image.py
583 lines (508 loc) · 24.2 KB
/
gradio_text2image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
import argparse
import copy
import math
import os
from typing import Optional
import gradio as gr
import pdb
import torch
import scipy
import glob
import torch.utils.checkpoint
from omegaconf import OmegaConf
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL, UNet2DConditionModel, DDIMScheduler, StableDiffusionPipeline
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import rescale_noise_cfg
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from sync_tiled_decode import apply_sync_tiled_decode, apply_tiled_processors
from model import ReDilateConvProcessor, inflate_kernels
from free_lunch_utils import register_free_upblock2d, register_free_crossattn_upblock2d
logger = get_logger(__name__, log_level="INFO")
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default="./huggingface/anything-v3.0", #runwayml/stable-diffusion-v1-5 anything-v3.0
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--validation_prompt", type=str,
default="a professional photograph of an astronaut riding a horse",
help="A prompt that is sampled during training for inference."
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="The directory where the downloaded models and datasets will be stored.",
)
parser.add_argument("--seed", type=int, default=23, help="A seed for reproducible training.")
parser.add_argument("--config", type=str, default="./configs/sd1.5_1024x1024.yaml")
parser.add_argument(
"--logging_dir",
type=str,
default="./imgs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default='fp16',
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument("--disable_freeu", action="store_true", help="disable freeU", default=False)
parser.add_argument("--vae_tiling", action="store_true", help="enable vae tiling")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
# Sanity checks
# if args.dataset_name is None and args.train_data_dir is None:
# raise ValueError("Need either a dataset name or a training folder.")
return args
def pipeline_processor(
self,
ndcfg_tau=0,
dilate_tau=0,
inflate_tau=0,
dilate_settings=None,
inflate_settings=None,
ndcfg_dilate_settings=None,
transform=None,
progressive=False,
):
@torch.no_grad()
def forward(
prompt=None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt=None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 1.0,
generator=None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback=None,
callback_steps: int = 1,
cross_attention_kwargs=None,
guidance_rescale: float = 0.0,
):
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
unet_inflate, unet_inflate_vanilla = None, None
if transform is not None:
unet_inflate = copy.deepcopy(self.unet)
if inflate_settings is not None:
inflate_kernels(unet_inflate, inflate_settings, transform)
if transform is not None and ndcfg_tau > 0:
unet_inflate_vanilla = copy.deepcopy(self.unet)
if inflate_settings is not None:
inflate_kernels(unet_inflate_vanilla, inflate_settings, transform)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
unet = unet_inflate if i < inflate_tau and transform is not None else self.unet
backup_forwards = dict()
for name, module in unet.named_modules():
if name in dilate_settings.keys():
backup_forwards[name] = module.forward
dilate = dilate_settings[name]
if progressive:
dilate = max(math.ceil(dilate * ((dilate_tau - i) / dilate_tau)), 2)
if i < inflate_tau and name in inflate_settings:
dilate = dilate / 2
# print(f"{name}: {dilate} {i < dilate_tau}")
module.forward = ReDilateConvProcessor(
module, dilate, mode='bilinear', activate=i < dilate_tau
)
# predict the noise residual
noise_pred = unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
).sample
for name, module in unet.named_modules():
if name in backup_forwards.keys():
module.forward = backup_forwards[name]
if i < ndcfg_tau:
unet = unet_inflate_vanilla if i < inflate_tau and transform is not None else self.unet
backup_forwards = dict()
for name, module in unet.named_modules():
if name in ndcfg_dilate_settings.keys():
backup_forwards[name] = module.forward
dilate = ndcfg_dilate_settings[name]
if progressive:
dilate = max(math.ceil(dilate * ((ndcfg_tau - i) / ndcfg_tau)), 2)
if i < inflate_tau and name in inflate_settings:
dilate = dilate / 2
# print(f"{name}: {dilate} {i < dilate_tau}")
module.forward = ReDilateConvProcessor(
module, dilate, mode='bilinear', activate=i < ndcfg_tau
)
noise_pred_vanilla = unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
).sample
for name, module in unet.named_modules():
if name in backup_forwards.keys():
module.forward = backup_forwards[name]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
if i < ndcfg_tau:
noise_pred_vanilla, _ = noise_pred_vanilla.chunk(2)
noise_pred = noise_pred_vanilla + guidance_scale * (noise_pred_text - noise_pred_uncond)
else:
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if do_classifier_free_guidance and guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return image, has_nsfw_concept
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
return forward
def read_module_list(path):
with open(path, 'r') as f:
module_list = f.readlines()
module_list = [name.strip() for name in module_list]
return module_list
def read_dilate_settings(path):
print(f"Reading dilation settings")
dilate_settings = dict()
with open(path, 'r') as f:
raw_lines = f.readlines()
for raw_line in raw_lines:
name, dilate = raw_line.split(':')
dilate_settings[name] = float(dilate)
print(f"{name} : {dilate_settings[name]}")
return dilate_settings
def main():
args = parse_args()
logging_dir = os.path.join(args.logging_dir)
config = config = OmegaConf.load(g_config) #config = OmegaConf.load(g_config)
args.pretrained_model_name_or_path = g_sd_options
accelerator_project_config = ProjectConfiguration(logging_dir=logging_dir)
accelerator = Accelerator(
mixed_precision=args.mixed_precision,
project_config=accelerator_project_config,
)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Final inference
# Load previous pipeline
tokenizer = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, torch_dtype=weight_dtype
)
text_encoder = CLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, torch_dtype=weight_dtype
)
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, torch_dtype=weight_dtype
)
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, torch_dtype=weight_dtype
)
noise_scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
pipeline = StableDiffusionPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=noise_scheduler,
feature_extractor=None,
safety_checker=None
)
sd_pipeline = StableDiffusionPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=noise_scheduler,
feature_extractor=None,
safety_checker=None
)
pipeline = pipeline.to(accelerator.device)
sd_pipeline = pipeline.to(accelerator.device)
if not args.disable_freeu:
if 'sd1.5' in os.path.basename(args.config):
print("Base model: SD 1.5")
register_free_upblock2d(pipeline, b1=1.2, b2=1.4, s1=0.9, s2=0.2)
register_free_crossattn_upblock2d(pipeline, b1=1.2, b2=1.4, s1=0.9, s2=0.2)
elif 'sd2.1' in os.path.basename(args.config):
print("Base model: SD 2.1")
register_free_upblock2d(pipeline, b1=1.1, b2=1.2, s1=0.9, s2=0.2)
register_free_crossattn_upblock2d(pipeline, b1=1.1, b2=1.2, s1=0.9, s2=0.2)
if args.vae_tiling:
pipeline.enable_vae_tiling()
apply_sync_tiled_decode(pipeline.vae)
apply_tiled_processors(pipeline.vae.decoder)
dilate_settings = read_dilate_settings(config.dilate_settings) \
if config.dilate_settings is not None else dict()
ndcfg_dilate_settings = read_dilate_settings(config.ndcfg_dilate_settings) \
if config.ndcfg_dilate_settings is not None else dict()
inflate_settings = read_module_list(config.inflate_settings) \
if config.inflate_settings is not None else list()
if config.inflate_transform is not None:
print(f"Using inflated conv {config.inflate_transform}")
transform = scipy.io.loadmat(config.inflate_transform)['R']
transform = torch.tensor(transform, device=accelerator.device)
else:
transform = None
unet.eval()
os.makedirs(os.path.join(logging_dir), exist_ok=True)
total_num = len(glob.glob(os.path.join(logging_dir, '*.jpg'))) - 1
args.validation_prompt = g_prompt
print(f"Using prompt {args.validation_prompt}")
if os.path.isfile(args.validation_prompt):
with open(args.validation_prompt, 'r') as f:
validation_prompt = f.readlines()
validation_prompt = [line.strip() for line in validation_prompt]
else:
validation_prompt = [args.validation_prompt, ]
inference_batch_size = config.inference_batch_size
num_batches = math.ceil(len(validation_prompt) / inference_batch_size)
for i in range(num_batches):
output_prompts = validation_prompt[i * inference_batch_size:min(
(i + 1) * inference_batch_size, len(validation_prompt))]
for n in range(config.num_iters_per_prompt):
args.seed = g_seed
seed = args.seed + n
set_seed(int(seed))#seed
latents = torch.randn(
(len(output_prompts), 4, config.latent_height, config.latent_width),
device=accelerator.device, dtype=weight_dtype
)
# config.dilate_tau = g_dilate_tau
pipeline.forward = pipeline_processor(
pipeline,
ndcfg_tau=config.ndcfg_tau,
dilate_tau=config.dilate_tau,
inflate_tau=config.inflate_tau,
dilate_settings=dilate_settings,
inflate_settings=inflate_settings,
ndcfg_dilate_settings=ndcfg_dilate_settings,
transform=transform,
progressive=config.progressive,
)
config.num_inference_steps = g_ddim_steps
images = pipeline.forward(
output_prompts, num_inference_steps=config.num_inference_steps, generator=None, latents=latents).images
sd_images = sd_pipeline(output_prompts, num_inference_steps=config.num_inference_steps).images
# sd_img_path = os.path.join(logging_dir, "sd_test.jpg")
# sd_images.save(sd_img_path)
for image, prompt in zip(images, output_prompts):
total_num = total_num + 1
img_path = os.path.join(logging_dir, f"{total_num}_{prompt[:200]}_seed{seed}.jpg")
image.save(img_path)
with open(os.path.join(logging_dir, f"{total_num}.txt"), 'w') as f:
f.writelines([prompt, ])
return images,sd_images
def process(prompt,sd_options,target_resolution,ddim_steps,seed):
global g_prompt, g_sd_options, g_config, g_ddim_steps, g_seed
if prompt == "":
prompt = "a professional photograph of an astronaut riding a horse"
g_prompt = prompt
if sd_options == "SD1.5" or sd_options =="SD2.1":
g_sd_options = "./huggingface/stable-diffusion-v1-5"
elif sd_options == "anything-v3":
g_sd_options = "./huggingface/anything-v3.0"
if sd_options == "SD1.5" and target_resolution == "1024x1024":
g_config = "./configs/sd1.5_1024x1024.yaml"
elif sd_options == "SD1.5" and target_resolution == "1280x1280":
g_config = "./configs/sd1.5_1280x1280.yaml"
elif sd_options == "SD1.5" and target_resolution == "2048x1024":
g_config = "./configs/sd1.5_2048x1024.yaml"
elif sd_options == "SD1.5" and target_resolution == "2048x2048":
g_config = "./configs/sd1.5_2048x2048.yaml"
elif sd_options == "SD2.1" and target_resolution == "1024x1024":
g_config = "./configs/sd2.1_1024x1024.yaml"
elif sd_options == "SD2.1" and target_resolution == "1280x1280":
g_config = "./configs/sd2.1_1280x1280.yaml"
elif sd_options == "SD2.1" and target_resolution == "2048x1024":
g_config = "./configs/sd2.1_2408x1024.yaml"
elif sd_options == "SD2.1" and target_resolution == "2048x2048":
g_config = "./configs/sd2.1_2048x2048.yaml"
elif sd_options == "anything-v3" and target_resolution == "1024x1024":
g_config = "./configs/sd1.5_1024x1024.yaml"
# g_dilate_tau = dilate_tau
g_ddim_steps = ddim_steps
g_seed = seed
images,sd_images = main()
return images,sd_images
if __name__ == "__main__":
css = """
h1 {
text-align: center;
}
#component-0 {
max-width: 730px;
margin: auto;
}
"""
def Dropdown_list(sd_options):
if sd_options == "anything-v3":
new_list = ["1024x1024"]
else:
new_list = ["1024x1024","1280x1280","2048x1024","2048x2048"]
return gr.Dropdown.update(choices = new_list)
block = gr.Blocks(css='style.css')
with block:
gr.Markdown("# SD vs. ScaleCrafter")
with gr.Group():
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
with gr.Column():
prompt = gr.Textbox(
label="Enter your prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
#value="a professional photograph of an astronaut riding a horse",
)
btn = gr.Button("Generate image", scale=0)
with gr.Group():
with gr.Row():
with gr.Accordion('scalecraft Parameters: ', open=False):
with gr.Row():
sd_options = gr.Dropdown(["SD1.5","SD2.1", "anything-v3",], label="SD options", value="SD1.5", visible=True)
# with gr.Row():
target_resolution = gr.Dropdown(["1024x1024","1280x1280","2048x1024","2048x2048"], label="Target Resolution", value="1024x1024", visible=True)
# dilate_tau = gr.Slider(label='dilate_tau',
# minimum=1,
# maximum=50,
# step=1,
# value=30)
ddim_steps = gr.Slider(label='ddim steps',
minimum=1,
maximum=100,
step=1,
value=50)
seed = gr.Slider(label='seed',
minimum=0,
maximum=1000,
step=1,
value=23)
with gr.Row():
with gr.Group():
# btn = gr.Button("Generate image", scale=0)
with gr.Row():
with gr.Column() as c1:
image_1 = gr.Gallery(label='SD', show_label=True, preview=True, elem_id="sd_gallery").style(columns=1, height='auto')
# image_1 = gr.Image(interactive=False)
image_1_label = gr.Markdown("SD")
with gr.Group():
# btn = gr.Button("Generate image", scale=0)
with gr.Row():
with gr.Column() as c2:
image_2 = gr.Gallery(label='ScaleCrafter', show_label=True, preview=True,elem_id="gallery").style(columns=1, height='auto')
# image_2 = gr.Image(interactive=False)
image_2_label = gr.Markdown("ScaleCrafter")
ips = [prompt,sd_options,target_resolution,ddim_steps,seed]
sd_options.change(Dropdown_list,inputs = sd_options, outputs=[target_resolution])
btn.click(process, inputs=ips, outputs=[image_2, image_1])
block.launch()