-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathimage2image_xl_controlnet.py
703 lines (623 loc) · 29 KB
/
image2image_xl_controlnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
import argparse
import copy
import math
import cv2
import os
from typing import Optional
import torch
import scipy
import glob
import numpy as np
import torch.utils.checkpoint
from PIL import Image
from omegaconf import OmegaConf
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from transformers import (
CLIPTextModel,
CLIPTokenizer,
CLIPTextModelWithProjection,
DPTFeatureExtractor,
DPTForDepthEstimation
)
from diffusers import (
AutoencoderKL,
UNet2DConditionModel,
ControlNetModel,
DDIMScheduler,
StableDiffusionXLControlNetPipeline,
)
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
from diffusers.pipelines.controlnet import MultiControlNetModel
from diffusers.utils.torch_utils import randn_tensor, is_compiled_module
from diffusers.utils import load_image
from model import ReDilateConvProcessor, inflate_kernels
logger = get_logger(__name__, log_level="INFO")
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default="stabilityai/stable-diffusion-xl-base-1.0",
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--controlnet_model_name_or_path",
type=str,
default="lllyasviel/sd-controlnet-canny",
help="Path to pretrained controlnet or controlnet identifier from huggingface.co/models.",
)
parser.add_argument(
"--midas_model_name_or_path",
type=str,
default="Intel/dpt-hybrid-midas",
help="Path to pretrained midas or midas identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--validation_prompt", type=str,
default="a professional photograph of an astronaut riding a horse",
help="A prompt that is sampled during training for inference."
)
parser.add_argument(
"--image_path", type=str,
default="",
help="A image path used for inference."
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="The directory where the downloaded models and datasets will be stored.",
)
parser.add_argument("--seed", type=int, default=23, help="A seed for reproducible training.")
parser.add_argument("--config", type=str, default="./configs/sdxl_2048x2048.yaml")
parser.add_argument(
"--logging_dir",
type=str,
default="",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default='fp16',
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
# Sanity checks
# if args.dataset_name is None and args.train_data_dir is None:
# raise ValueError("Need either a dataset name or a training folder.")
return args
def pipeline_processor(
self,
ndcfg_tau=0,
dilate_tau=0,
inflate_tau=0,
sdedit_tau=0,
dilate_settings=None,
inflate_settings=None,
ndcfg_dilate_settings=None,
transform=None,
progressive=False,
):
@torch.no_grad()
def forward(
prompt=None,
prompt_2=None,
image=None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 5.0,
negative_prompt=None,
negative_prompt_2=None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 1.0,
generator=None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback=None,
callback_steps: int = 1,
cross_attention_kwargs=None,
controlnet_conditioning_scale=1.0,
guess_mode: bool = False,
control_guidance_start=0.0,
control_guidance_end=1.0,
original_size=None,
crops_coords_top_left=(0, 0),
target_size=None,
):
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
# align format for control guidance
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
control_guidance_start, control_guidance_end = mult * [control_guidance_start], mult * [
control_guidance_end
]
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
original_size = original_size or (height, width)
target_size = target_size or (height, width)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
image,
callback_steps,
negative_prompt,
negative_prompt_2,
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
controlnet_conditioning_scale,
control_guidance_start,
control_guidance_end,
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
global_pool_conditions = (
controlnet.config.global_pool_conditions
if isinstance(controlnet, ControlNetModel)
else controlnet.nets[0].config.global_pool_conditions
)
guess_mode = guess_mode or global_pool_conditions
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
lora_scale=text_encoder_lora_scale,
)
# 4. Prepare image
if isinstance(controlnet, ControlNetModel):
image = self.prepare_image(
image=image,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=controlnet.dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
guess_mode=guess_mode,
)
height, width = image.shape[-2:]
elif isinstance(controlnet, MultiControlNetModel):
images = []
for image_ in image:
image_ = self.prepare_image(
image=image_,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=controlnet.dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
guess_mode=guess_mode,
)
images.append(image_)
image = images
height, width = image[0].shape[-2:]
else:
assert False
# 5. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 6. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7.1 Create tensor stating which controlnets to keep
controlnet_keep = []
for i in range(len(timesteps)):
keeps = [
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
for s, e in zip(control_guidance_start, control_guidance_end)
]
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
# 7.2 Prepare added time ids & embeddings
if isinstance(image, list):
original_size = original_size or image[0].shape[-2:]
else:
original_size = original_size or image.shape[-2:]
target_size = target_size or (height, width)
add_text_embeds = pooled_prompt_embeds
add_time_ids = self._get_add_time_ids(
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
)
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
# 8. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
unet_inflate, unet_inflate_vanilla = None, None
if transform is not None:
unet_inflate = copy.deepcopy(self.unet)
if inflate_settings is not None:
inflate_kernels(unet_inflate, inflate_settings, transform)
if transform is not None and ndcfg_tau > 0:
unet_inflate_vanilla = copy.deepcopy(self.unet)
if inflate_settings is not None:
inflate_kernels(unet_inflate_vanilla, inflate_settings, transform)
if sdedit_tau is not None:
timesteps = timesteps[sdedit_tau:]
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# controlnet(s) inference
if guess_mode and do_classifier_free_guidance:
# Infer ControlNet only for the conditional batch.
control_model_input = latents
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
else:
control_model_input = latent_model_input
controlnet_prompt_embeds = prompt_embeds
if isinstance(controlnet_keep[i], list):
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
else:
controlnet_cond_scale = controlnet_conditioning_scale
if isinstance(controlnet_cond_scale, list):
controlnet_cond_scale = controlnet_cond_scale[0]
cond_scale = controlnet_cond_scale * controlnet_keep[i]
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
down_block_res_samples, mid_block_res_sample = self.controlnet(
control_model_input,
t,
encoder_hidden_states=controlnet_prompt_embeds,
controlnet_cond=image,
conditioning_scale=cond_scale,
guess_mode=guess_mode,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)
if guess_mode and do_classifier_free_guidance:
# Infered ControlNet only for the conditional batch.
# To apply the output of ControlNet to both the unconditional and conditional batches,
# add 0 to the unconditional batch to keep it unchanged.
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
unet = unet_inflate if i < inflate_tau and transform is not None else self.unet
backup_forwards = dict()
for name, module in unet.named_modules():
if name in dilate_settings.keys():
backup_forwards[name] = module.forward
dilate = dilate_settings[name]
if progressive:
dilate = max(math.ceil(dilate * ((dilate_tau - i) / dilate_tau)), 2)
if i < inflate_tau and name in inflate_settings:
dilate = dilate / 2
module.forward = ReDilateConvProcessor(
module, dilate, mode='bilinear', activate=i < dilate_tau
)
# predict the noise residual
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
noise_pred = unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
for name, module in unet.named_modules():
if name in backup_forwards.keys():
module.forward = backup_forwards[name]
if i < ndcfg_tau:
unet = unet_inflate_vanilla if i < inflate_tau and transform is not None else self.unet
backup_forwards = dict()
for name, module in unet.named_modules():
if name in ndcfg_dilate_settings.keys():
backup_forwards[name] = module.forward
dilate = ndcfg_dilate_settings[name]
if progressive:
dilate = max(math.ceil(dilate * ((ndcfg_tau - i) / ndcfg_tau)), 2)
if i < inflate_tau and name in inflate_settings:
dilate = dilate / 2
module.forward = ReDilateConvProcessor(
module, dilate, mode='bilinear', activate=i < ndcfg_tau
)
noise_pred_vanilla = unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
for name, module in unet.named_modules():
if name in backup_forwards.keys():
module.forward = backup_forwards[name]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
if i < ndcfg_tau:
noise_pred_vanilla, _ = noise_pred_vanilla.chunk(2)
noise_pred = noise_pred_vanilla + guidance_scale * (noise_pred_text - noise_pred_uncond)
else:
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
variance_noise = None
results = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs, variance_noise=variance_noise, return_dict=True)
latents, ori_latents = results.prev_sample, results.pred_original_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
# If we do sequential model offloading, let's offload unet and controlnet
# manually for max memory savings
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.unet.to("cpu")
self.controlnet.to("cpu")
torch.cuda.empty_cache()
# make sure the VAE is in float32 mode, as it overflows in float16
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
self.upcast_vae()
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
else:
image = latents
return StableDiffusionXLPipelineOutput(images=image)
# apply watermark if available
if self.watermark is not None:
image = self.watermark.apply_watermark(image)
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image,)
return StableDiffusionXLPipelineOutput(images=image)
return forward
def read_module_list(path):
with open(path, 'r') as f:
module_list = f.readlines()
module_list = [name.strip() for name in module_list]
return module_list
def read_dilate_settings(path):
print(f"Reading dilation settings")
dilate_settings = dict()
with open(path, 'r') as f:
raw_lines = f.readlines()
for raw_line in raw_lines:
name, dilate = raw_line.split(':')
dilate_settings[name] = float(dilate)
print(f"{name} : {dilate_settings[name]}")
return dilate_settings
def get_depth_map(image, feature_extractor, depth_estimator):
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
with torch.no_grad(), torch.autocast("cuda"):
depth_map = depth_estimator(image).predicted_depth
depth_map = torch.nn.functional.interpolate(
depth_map.unsqueeze(1),
size=(1024, 1024),
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
image = torch.cat([depth_map] * 3, dim=1)
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
return image
def main():
args = parse_args()
logging_dir = os.path.join(args.logging_dir)
config = OmegaConf.load(args.config)
accelerator_project_config = ProjectConfiguration(logging_dir=logging_dir)
accelerator = Accelerator(
mixed_precision=args.mixed_precision,
project_config=accelerator_project_config,
)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Final inference
# Load previous pipeline
tokenizer = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, torch_dtype=weight_dtype
)
tokenizer_2 = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path, subfolder="tokenizer_2", revision=args.revision, torch_dtype=weight_dtype
)
text_encoder = CLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, torch_dtype=weight_dtype
)
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, torch_dtype=weight_dtype
)
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, torch_dtype=weight_dtype
)
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, torch_dtype=weight_dtype
)
controlnet = ControlNetModel.from_pretrained(args.controlnet_model_name_or_path, torch_dtype=weight_dtype)
noise_scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
pipeline = StableDiffusionXLControlNetPipeline(
vae=vae,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
unet=unet,
controlnet=controlnet,
scheduler=noise_scheduler,
)
pipeline = pipeline.to(accelerator.device)
depth_estimator = DPTForDepthEstimation.from_pretrained(args.midas_model_name_or_path).to("cuda")
feature_extractor = DPTFeatureExtractor.from_pretrained(args.midas_model_name_or_path)
dilate_settings = read_dilate_settings(config.dilate_settings) \
if config.dilate_settings is not None else dict()
ndcfg_dilate_settings = read_dilate_settings(config.ndcfg_dilate_settings) \
if config.ndcfg_dilate_settings is not None else dict()
inflate_settings = read_module_list(config.inflate_settings) \
if config.inflate_settings is not None else list()
if config.inflate_transform is not None:
print(f"Using inflated conv {config.inflate_transform}")
transform = scipy.io.loadmat(config.inflate_transform)['R']
transform = torch.tensor(transform, device=accelerator.device)
else:
transform = None
unet.eval()
controlnet.eval()
os.makedirs(os.path.join(logging_dir), exist_ok=True)
total_num = len(glob.glob(os.path.join(logging_dir, '*.jpg'))) - 1
print(f"Using prompt {args.validation_prompt}")
if os.path.isfile(args.validation_prompt):
with open(args.validation_prompt, 'r') as f:
validation_prompt = f.readlines()
validation_prompt = [line.strip() for line in validation_prompt]
else:
validation_prompt = [args.validation_prompt, ]
print(f"Using image {args.image_path}")
if args.image_path.endswith('.txt'):
with open(args.image_path, 'r') as f:
image_path = f.readlines()
image_path = [line.strip() for line in image_path]
else:
image_path = [args.image_path, ]
assert len(image_path) == len(validation_prompt)
inference_batch_size = config.inference_batch_size
num_batches = math.ceil(len(validation_prompt) / inference_batch_size)
for i in range(num_batches):
output_prompts, paths = (
validation_prompt[i * inference_batch_size:min((i + 1) * inference_batch_size, len(validation_prompt))],
image_path[i * inference_batch_size:min((i + 1) * inference_batch_size, len(image_path))]
)
# Read controlnet input image
output_images, pixel_height, pixel_width, latent_height, latent_width = (
list(), None, None, None, None
)
for path in paths:
image = load_image(path)
if pixel_height is not None:
assert pixel_height == (image.height // 64) * 64 \
and pixel_width == (image.width // 64) * 64
else:
latent_height, latent_width = (image.height // 64) * 8, (image.width // 64) * 8
pixel_height, pixel_width = latent_height * 8, latent_width * 8
image = np.array(load_image(path).resize((pixel_height, pixel_width)))
depth_image = get_depth_map(image, feature_extractor, depth_estimator)
output_images.append(depth_image)
for n in range(config.num_iters_per_prompt):
seed = args.seed + n
set_seed(seed)
latents = torch.randn(
(len(output_prompts), 4, latent_height, latent_width),
device=accelerator.device, dtype=weight_dtype
)
pipeline.enable_vae_tiling()
pipeline.forward = pipeline_processor(
pipeline,
ndcfg_tau=config.ndcfg_tau,
dilate_tau=config.dilate_tau,
inflate_tau=config.inflate_tau,
dilate_settings=dilate_settings,
inflate_settings=inflate_settings,
ndcfg_dilate_settings=ndcfg_dilate_settings,
transform=transform,
progressive=config.progressive,
)
images = pipeline.forward(
output_prompts,
image=output_images,
num_inference_steps=config.num_inference_steps,
generator=None,
latents=latents,
height=pixel_height,
width=pixel_width
).images
for image, prompt in zip(images, output_prompts):
total_num = total_num + 1
img_path = os.path.join(logging_dir, f"{total_num}_{prompt[:200]}_seed{seed}.jpg")
image.save(img_path)
with open(os.path.join(logging_dir, f"{total_num}.txt"), 'w') as f:
f.writelines([prompt, ])
if __name__ == "__main__":
main()