forked from usuyama/pytorch-unet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulation.py
105 lines (76 loc) · 3.31 KB
/
simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import numpy as np
import random
def generate_random_data(height, width, count):
x, y = zip(*[generate_img_and_mask(height, width) for i in range(0, count)])
X = np.asarray(x) * 255
X = X.repeat(3, axis=1).transpose([0, 2, 3, 1]).astype(np.uint8)
Y = np.asarray(y)
return X, Y
def generate_img_and_mask(height, width):
shape = (height, width)
triangle_location = get_random_location(*shape)
circle_location1 = get_random_location(*shape, zoom=0.7)
circle_location2 = get_random_location(*shape, zoom=0.5)
mesh_location = get_random_location(*shape)
square_location = get_random_location(*shape, zoom=0.8)
plus_location = get_random_location(*shape, zoom=1.2)
# Create input image
arr = np.zeros(shape, dtype=bool)
arr = add_triangle(arr, *triangle_location)
arr = add_circle(arr, *circle_location1)
arr = add_circle(arr, *circle_location2, fill=True)
arr = add_mesh_square(arr, *mesh_location)
arr = add_filled_square(arr, *square_location)
arr = add_plus(arr, *plus_location)
arr = np.reshape(arr, (1, height, width)).astype(np.float32)
# Create target masks
masks = np.asarray([
add_filled_square(np.zeros(shape, dtype=bool), *square_location),
add_circle(np.zeros(shape, dtype=bool), *circle_location2, fill=True),
add_triangle(np.zeros(shape, dtype=bool), *triangle_location),
add_circle(np.zeros(shape, dtype=bool), *circle_location1),
add_filled_square(np.zeros(shape, dtype=bool), *mesh_location),
# add_mesh_square(np.zeros(shape, dtype=bool), *mesh_location),
add_plus(np.zeros(shape, dtype=bool), *plus_location)
]).astype(np.float32)
return arr, masks
def add_square(arr, x, y, size):
s = int(size / 2)
arr[x-s,y-s:y+s] = True
arr[x+s,y-s:y+s] = True
arr[x-s:x+s,y-s] = True
arr[x-s:x+s,y+s] = True
return arr
def add_filled_square(arr, x, y, size):
s = int(size / 2)
xx, yy = np.mgrid[:arr.shape[0], :arr.shape[1]]
return np.logical_or(arr, logical_and([xx > x - s, xx < x + s, yy > y - s, yy < y + s]))
def logical_and(arrays):
new_array = np.ones(arrays[0].shape, dtype=bool)
for a in arrays:
new_array = np.logical_and(new_array, a)
return new_array
def add_mesh_square(arr, x, y, size):
s = int(size / 2)
xx, yy = np.mgrid[:arr.shape[0], :arr.shape[1]]
return np.logical_or(arr, logical_and([xx > x - s, xx < x + s, xx % 2 == 1, yy > y - s, yy < y + s, yy % 2 == 1]))
def add_triangle(arr, x, y, size):
s = int(size / 2)
triangle = np.tril(np.ones((size, size), dtype=bool))
arr[x-s:x-s+triangle.shape[0],y-s:y-s+triangle.shape[1]] = triangle
return arr
def add_circle(arr, x, y, size, fill=False):
xx, yy = np.mgrid[:arr.shape[0], :arr.shape[1]]
circle = np.sqrt((xx - x) ** 2 + (yy - y) ** 2)
new_arr = np.logical_or(arr, np.logical_and(circle < size, circle >= size * 0.7 if not fill else True))
return new_arr
def add_plus(arr, x, y, size):
s = int(size / 2)
arr[x-1:x+1,y-s:y+s] = True
arr[x-s:x+s,y-1:y+1] = True
return arr
def get_random_location(width, height, zoom=1.0):
x = int(width * random.uniform(0.1, 0.9))
y = int(height * random.uniform(0.1, 0.9))
size = int(min(width, height) * random.uniform(0.06, 0.12) * zoom)
return (x, y, size)