-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxitu
112 lines (102 loc) · 3.21 KB
/
xitu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#coding:utf-8
import numpy as np
from math import *
def solve(numofele):
Ml = [3, 2, 1, 0, -1, -2, -3]
Ms = [+0.5, -0.5]
dict = arrange(numofele, Ml)
array = matrix(dict)
result = []
return minus(array, result)
# create dict to form the array
def arrange(num, Ml):
numofup = 0
numofdown = 0
left = num * 0.5
right = -num * 0.5 - 1
width = np.arange(left, right, -1)
up = num * 3
down = -num * 3 - 1
height = np.arange(up, down, -1)
dict = {}
for i in height:
dict[i] = {}
for j in width:
numofup = j + 0.5 * num
numofdown = num - numofup
dict[i][j] = howmanycir(numofup, numofdown, i, Ml)
return dict
'''how many circumstances if the number of up and down electron
and the total and the constraint of range has been known'''
def howmanycir(up, down, tot, Ml):
maxi = int(max(up, down))
mini = int(min(up, down))
Ml.sort(reverse=True)
num = sum(Ml[:maxi])
result = 0
if mini != 0:
for i in range(-num, num+1):
a = []
maxnum = iter(maxi, Ml, a, i, 0) / factorial(maxi)
j = tot - i
minnum = iter(mini, Ml, a, j, 0) / factorial(mini)
result += maxnum * minnum
else:
a = []
result += iter(maxi, Ml, a, tot, 0) / factorial(maxi)
return result
'''how many circumstances(before normalization) if the times
of randomly selection(no repetition) from the selection range
and the total has been known'''
def iter(numofiter, Ml, a, requiretot, numofcir):
for i in Ml:
subMl = copy(Ml)
subMl.remove(i)
b = copy(a)
b.append(i)
numtemp = numofiter
numtemp -= 1
if numtemp == 0:
if sum(b) == requiretot: numofcir += 1
else:
numofcir = iter(numtemp, subMl, b, requiretot, numofcir) # tricky
return numofcir
# copy array to server the 'iter' function
def copy(array):
temp = []
for i in array:
temp.append(i)
return temp
# create array from the dictionary
def matrix(dict):
raw = len(dict)
column = len(dict[0])
result = np.zeros((raw, column))
keys = sorted(dict.keys(), reverse=True)
for i in range(len(keys)):
values = dict[keys[i]]
temp = sorted(values.keys(), reverse=True)
for j in range(len(temp)):
result[i][j] = values.get(temp[j])
return result
# minus arranged list of 1 to conclude the spectroscopic term
def minus(array, result):
raw = len(array)
column = len(array[0])
for i in range(raw):
for j in range(column):
if array[i][j] != 0:
array[i:raw-i, j:column-j] = array[i:raw-i, j:column-j] - 1
result.append(symbol(raw - 2*i, column - 2*j))
subarray = array
return minus(subarray, result)
else: continue
return set(result) # avoid repetition
# how to sybolize the minus term
def symbol(raw, column):
L = (raw - 1) / 2
S = (column - 1)/2.0
orbit = {0:'S', 1:'P', 2:'D', 3:'F', 4:'G', 5:'H', 6:'I', 7:'K', 8:'L', 9:'M', 10:'N', 11:'O', 12:'Q'}
return "%d%s" % (int(2*S+1), orbit[L])
# --edited by Yunxing Zuo
# --edited with notepad++