-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathsimper.py
144 lines (113 loc) · 5.15 KB
/
simper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
"""
Minimal SimPer implementation & example training loops.
"""
import tensorflow as tf
from networks import Featurizer, Classifier
@tf.function
def _max_cross_corr(feats_1, feats_2):
# feats_1: 1 x T(# time stamp)
# feats_2: M(# aug) x T(# time stamp)
feats_2 = tf.cast(feats_2, feats_1.dtype)
feats_1 = feats_1 - tf.math.reduce_mean(feats_1, axis=-1, keepdims=True)
feats_2 = feats_2 - tf.math.reduce_mean(feats_2, axis=-1, keepdims=True)
min_N = min(feats_1.shape[-1], feats_2.shape[-1])
padded_N = max(feats_1.shape[-1], feats_2.shape[-1]) * 2
feats_1_pad = tf.pad(feats_1, tf.constant([[0, 0], [0, padded_N - feats_1.shape[-1]]]))
feats_2_pad = tf.pad(feats_2, tf.constant([[0, 0], [0, padded_N - feats_2.shape[-1]]]))
feats_1_fft = tf.signal.rfft(feats_1_pad)
feats_2_fft = tf.signal.rfft(feats_2_pad)
X = feats_1_fft * tf.math.conj(feats_2_fft)
power_norm = tf.cast(
tf.math.reduce_std(feats_1, axis=-1, keepdims=True) *
tf.math.reduce_std(feats_2, axis=-1, keepdims=True),
X.dtype)
power_norm = tf.where(
tf.equal(power_norm, 0), tf.ones_like(power_norm), power_norm)
X = X / power_norm
cc = tf.signal.irfft(X) / (min_N - 1)
max_cc = tf.math.reduce_max(cc, axis=-1)
return max_cc
@tf.function
def batched_max_cross_corr(x, y):
"""
x: M(# aug) x T(# time stamp)
y: M(# aug) x T(# time stamp)
"""
# Calculate distance for a single row of x.
per_x_dist = lambda i: _max_cross_corr(x[i:(i + 1), :], y)
# Compute and stack distances for all rows of x.
dist = tf.map_fn(fn=per_x_dist,
elems=tf.range(tf.shape(x)[0], dtype=tf.int64),
fn_output_signature=x.dtype)
return dist
@tf.function
def normed_psd(x, fps, zero_pad=0, high_pass=0.25, low_pass=15):
""" x: M(# aug) x T(# time stamp) """
x = x - tf.math.reduce_mean(x, axis=-1, keepdims=True)
if zero_pad > 0:
L = x.shape[-1]
x = tf.pad(x, tf.constant([[int(zero_pad / 2 * L), int(zero_pad / 2 * L)]]))
x = tf.abs(tf.signal.rfft(x)) ** 2
Fn = fps / 2
freqs = tf.linspace(0., Fn, x.shape[-1])
use_freqs = tf.math.logical_and(freqs >= high_pass, freqs <= low_pass)
use_freqs = tf.repeat(tf.expand_dims(use_freqs, 0), x.shape[0], axis=0)
x = tf.reshape(x[use_freqs], (x.shape[0], -1))
# Normalize PSD
denom = tf.math.reduce_euclidean_norm(x, axis=-1, keepdims=True)
denom = tf.where(tf.equal(denom, 0), tf.ones_like(denom), denom)
x = x / denom
return x
@tf.function
def batched_normed_psd(x, y):
"""
x: M(# aug) x T(# time stamp)
y: M(# aug) x T(# time stamp)
"""
return tf.matmul(normed_psd(x), normed_psd(y), transpose_b=True)
def label_distance(labels_1, labels_2, dist_fn='l1', label_temperature=0.1):
# labels: bsz x M(#augs)
# output: bsz x M(#augs) x M(#augs)
if dist_fn == 'l1':
dist_mat = - tf.math.abs(labels_1[:, :, None] - labels_2[:, None, :])
elif dist_fn == 'l2':
dist_mat = - tf.math.abs(labels_1[:, :, None] - labels_2[:, None, :]) ** 2
elif dist_fn == 'sqrt':
dist_mat = - tf.math.abs(labels_1[:, :, None] - labels_2[:, None, :]) ** 0.5
else:
raise NotImplementedError(f"`{dist_fn}` not implemented.")
prob_mat = tf.nn.softmax(dist_mat / label_temperature, axis=-1)
return prob_mat
class SimPer(tf.keras.Model):
def __init__(self, hparams):
super(SimPer, self).__init__()
self.hparams = hparams
self.featurizer = Featurizer(self.hparams["n_frames"])
self.regressor = Classifier(self.featurizer.n_outputs, 1, False)
self.network = tf.keras.Sequential([self.featurizer, self.regressor])
self.optimizer = tf.keras.optimizers.Adam(lr=self.hparams["lr"])
def update(self, minibatches):
all_x, all_speed = minibatches
# all_x: [bsz, 2*M, SSL_FRAMES, H, W, C]
batch_size, num_augments = all_x.shape[0], all_x.shape[1]
all_x = tf.reshape(all_x, [batch_size * num_augments] + all_x.shape[2:].as_list())
# [bsz, 2*M] -> [bsz, M, M]
all_labels = label_distance(all_speed[:, :num_augments // 2],
all_speed[:, num_augments // 2:],
self.hparams["label_dist_fn"],
self.hparams["label_temperature"])
criterion = tf.keras.losses.CategoricalCrossentropy(from_logits=True)
with tf.GradientTape() as tape:
all_z = self.featurizer(all_x)
all_z = tf.reshape(all_z, [batch_size, num_augments, -1])
loss = 0
for feats, labels in zip(all_z, all_labels):
feat_dist = globals()[self.hparams["feat_dist_fn"]](
feats[:num_augments // 2], feats[num_augments // 2:])
loss += criterion(y_pred=feat_dist, y_true=labels)
loss /= batch_size
gradients = tape.gradient(loss, self.featurizer.trainable_variables)
self.optimizer.apply_gradients(zip(gradients, self.featurizer.trainable_variables))
return loss
def predict(self, x, training: bool):
return self.featurizer(x, training=training)