-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrainer.py
150 lines (130 loc) · 6.39 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
import sys
import time
import numpy as np
import torch
from torch.autograd import Variable
from torch.optim import Adam
from torch.optim import Adagrad
from torch.utils.data import DataLoader
import models
import data_factory
import losses
from glob import glob
class trainer(object):
def __init__(self, args, cfg, checkpoint_dir):
self.batch_size = cfg.train.batch_size
self.learning_rate = cfg.train.lr
self.epochs = cfg.train.epochs
self.start_epoch = 1
self.lr_decay_epochs = cfg.train.lr_decay
self.log_interval = cfg.train.log_inter
self.checkpoint_dir = checkpoint_dir
self.checkpoint_interval = cfg.train.ckpt_inter
self.lambda_ = cfg.train.beta
self.attr_dims = cfg.attr_dims
self.device = torch.device(
'cuda:{}'.format(0) if torch.cuda.is_available() else 'cpu')
self.triplet_batch = 4
self.fnet, self.optimizer, self.im_size = self.build_model(cfg)
if os.path.exists(cfg.ckpt_name) and args.fine_tuning:
pth = glob(os.path.join(cfg.ckpt_name, "ckpt_epoch_*.pth"))
pth = sorted(pth,
key=lambda p: int(os.path.basename(p).replace("ckpt_epoch_", "").replace(".pth", "")),
reverse=True)
if pth:
self.load(pth[0])
self.start_epoch = int(
''.join([c for c in os.path.basename(pth[0]) if c.isdigit()])
) + 1
self.attr_data, self.dataset_size, self.data_loader = self.prepare_dataloader(cfg)
#self.attr_data = torch.from_numpy(self.attr_data).to(self.device)
self.online_zsl_loss = losses.ZeroShotLearningLoss(self.attr_data)
if cfg.train.triplet_mode == "batch_all":
self.online_triplet_loss = \
losses.BatchAllTripletLoss(self.device,
self.batch_size // self.triplet_batch,
self.triplet_batch)
else:
self.online_triplet_loss = \
losses.BatchHardTripletLoss(self.device,
self.batch_size // self.triplet_batch,
self.triplet_batch)
def build_model(self, cfg):
fnet, im_size = models.load_model(cfg.model, k=self.attr_dims)
optimizer = Adam(fnet.parameters(), self.learning_rate)
return fnet.to(self.device), optimizer, im_size
def prepare_dataloader(self, cfg):
if cfg.split == "SS":
dataset = data_factory.SSFactory(
cfg.image, cfg.attribute, cfg.class_name, cfg.ss_train,
transform=cfg.train.data_aug, batch_size=self.batch_size, im_size=self.im_size
)
elif cfg.split == "PS":
dataset = data_factory.PSFactory(
cfg.image, cfg.attribute, cfg.class_name, cfg.ps_train,
transform=cfg.train.data_aug, batch_size=self.batch_size, im_size=self.im_size
)
else:
raise NotImplementedError
attr_data = dataset.selected_attr()
attr_data = torch.from_numpy(attr_data).to(self.device)
dataset_size = dataset.size()
dataset.im_size = self.im_size
data_loader = DataLoader(dataset=dataset, batch_size=1, shuffle=False)
return attr_data, dataset_size, data_loader
def exp_lr_scheduler(self, epoch, lr_decay_epoch, lr_decay=0.1):
if epoch % lr_decay_epoch == 0:
for param_group in self.optimizer.param_groups:
param_group['lr'] *= lr_decay
def run(self):
for e in range(self.start_epoch, self.epochs + self.start_epoch):
self.exp_lr_scheduler(e, self.lr_decay_epochs)
self.fnet.train()
agg_loss = {"loss": 0., "attr_loss": 0., "latent_loss": 0}
current_size = 0
for batch_id, (x, attr_mask) in enumerate(self.data_loader):
current_size += self.batch_size
x = x.to(self.device) # 1 x 3#batch_size x 299 x 299
attr_mask = attr_mask.to(self.device).squeeze() # 1 x #batch_size x k
attr_embed, latent_embed = \
self.fnet(x.view(-1, 3, x.size(2), x.size(3)))
latent_embed = latent_embed.view(
self.batch_size // self.triplet_batch, self.triplet_batch, latent_embed.size(1))
latent_loss = self.online_triplet_loss(latent_embed)
attr_loss = self.online_zsl_loss(attr_embed,
attr_mask)
attr_loss = attr_loss * self.lambda_
loss = latent_loss + attr_loss
self.optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.fnet.parameters(), 5)
self.optimizer.step()
agg_loss["loss"] += loss.item()
agg_loss["attr_loss"] += attr_loss.item()
agg_loss["latent_loss"] += latent_loss.item()
if current_size % self.log_interval == 0:
mesg = "[E{} {}/{} Cur/Agg]\t tl:{:.3f}/{:.3f}\t al:{:.3f}/{:.3f}\t total:{:.3f}/{:.3f}".format(
e, current_size, self.dataset_size,
latent_loss.item(),
agg_loss["latent_loss"] / (batch_id + 1),
attr_loss.item(),
agg_loss["attr_loss"] / (batch_id + 1),
loss.item(),
agg_loss["loss"] / (batch_id + 1)
)
print(mesg)
if self.checkpoint_dir is not None and e % self.checkpoint_interval == 0:
self.save(self.checkpoint_dir, e)
def save(self, checkpoint_dir, e):
if not os.path.exists(checkpoint_dir):
os.mkdir(checkpoint_dir)
self.fnet.eval()
ckpt_model_filename = os.path.join(checkpoint_dir, "ckpt_epoch_" + str(e) + ".pth")
state_dict = self.fnet.state_dict()
torch.save(state_dict, ckpt_model_filename)
self.fnet.train()
def load(self, checkpoint_dir):
state_dict = torch.load(checkpoint_dir)
self.fnet.load_state_dict(state_dict)
self.fnet.to(self.device)