-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy patheval.py
159 lines (137 loc) · 4.92 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#coding=utf-8
import os
import time
import timeit
import argparse
import numpy as np
#import cv2
from PIL import Image
import torch
import torch.nn.functional as F
from RMI import parser_params, full_model
from RMI.model import psp, deeplab
from RMI.dataloaders import factory
from RMI.utils.metrics import Evaluator
from RMI.dataloaders import utils
# A map from segmentation name to model object.
seg_model_obj_dict = {
'pspnet': psp.PSPNet,
'deeplabv3': deeplab.DeepLabv3,
'deeplabv3+': deeplab.DeepLabv3Plus,
}
class Trainer(object):
def __init__(self, args):
"""initialize the Trainer"""
# about gpus
self.cuda = args.cuda
self.gpu_ids = args.gpu_ids
self.num_gpus = len(self.gpu_ids)
self.crf_iter_steps = args.crf_iter_steps
self.output_dir = args.output_dir
self.model = 'val'
# define dataloader
self.val_loader = factory.get_dataset(args.data_dir,
batch_size=1,
dataset=args.dataset,
split=args.train_split)
self.nclass = self.val_loader.NUM_CLASSES
# define network
assert args.seg_model in seg_model_obj_dict.keys()
self.seg_model = args.seg_model
self.seg_model = seg_model_obj_dict[self.seg_model](num_classes=self.nclass,
backbone=args.backbone,
output_stride=args.out_stride,
norm_layer=torch.nn.BatchNorm2d,
bn_mom=args.bn_mom,
freeze_bn=True)
# define criterion
self.criterion = torch.nn.CrossEntropyLoss(weight=None, ignore_index=255, reduction='mean')
self.model = full_model.FullModel(seg_model=self.seg_model,
model=self.model,
criterion=self.criterion)
# define evaluator
self.evaluator = Evaluator(self.nclass)
# using cuda
if args.cuda:
self.model = torch.nn.DataParallel(self.model, device_ids=self.gpu_ids)
#patch_replication_callback(self.model)
self.model = self.model.cuda()
self.criterion = self.criterion.cuda()
# resuming checkpoint
if args.resume is not None:
if not os.path.isfile(args.resume):
raise RuntimeError("=> no checkpoint found at '{}'" .format(args.resume))
print('Restore parameters from the {}'.format(args.resume))
checkpoint = torch.load(args.resume)
self.global_step = checkpoint['global_step']
if args.cuda:
self.model.module.load_state_dict(checkpoint['state_dict'])
else:
self.model.load_state_dict(checkpoint['state_dict'])
def validation(self):
"""validation procedure
"""
# set validation mode
self.model.eval()
self.evaluator.reset()
test_loss = 0.0
start = timeit.default_timer()
for i in range(len(self.val_loader)):
#for i, sample in enumerate(self.val_loader):
sample = self.val_loader[i]
image, target = sample['image'], sample['label']
image, target = image.repeat(self.num_gpus, 1, 1, 1), target.repeat(self.num_gpus, 1, 1)
#print("{}-th sample, Image shape {}, label shape {}".format(i + 1, image.size(), target.size()))
if self.cuda:
image, target = image.cuda(), target.cuda()
# forward
with torch.no_grad():
output = self.model(image)
# the output of the pspnet is a tuple
if self.seg_model == 'pspnet':
output = output[0]
loss = self.criterion(output, target.long())
test_loss += loss.item()
# get probs, shape [N, C, H, W] --> [N, H, W, C]
output = output.squeeze_()
pred = output.data.cpu().numpy()
pred = np.argmax(pred, axis=0)
target = target.squeeze_().cpu().numpy()
# save output
color_img = True
path_to_output = os.path.join(self.output_dir, self.val_loader.image_ids[i] + '.png')
pred = pred.astype(np.uint8)
if color_img:
pass
pred_color = utils.decode_segmap(pred, dataset='pascal')
result = Image.fromarray(pred_color.astype(np.uint8))
result.save(path_to_output)
else:
result = Image.fromarray()
result.save(path_to_output)
# report time
if not i % 100:
stop = timeit.default_timer()
print("current step = {} ({:.3f} sec)".format(i, stop - start))
start = timeit.default_timer()
# Add batch sample into evaluator
self.evaluator.add_batch(target, pred)
# log and summary the validation results
# log and summary the validation results
px_acc = self.evaluator.pixel_accuracy_np()
val_miou = self.evaluator.mean_iou_np(is_show_per_class=True)
print("\nINFO:PyTorch: validation results: miou={:5f}, px_acc={:5f}, loss={:5f} \n".
format(val_miou, px_acc, test_loss))
def main():
# get the parameters
parser = argparse.ArgumentParser(description="PyTorch Segmentation Model Training")
args = parser_params.add_parser_params(parser)
print(args)
torch.manual_seed(args.seed)
trainer = Trainer(args)
start_time = time.time()
trainer.validation()
total_time = time.time() - start_time
print("The validation time is {:.5f} sec".format(total_time))
if __name__ == "__main__":
main()