-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathfull_model.py
69 lines (62 loc) · 2.28 KB
/
full_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# coding=utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
#import torch
import torch.nn as nn
import torch.nn.functional as F
_PSP_AUX_WEIGHT = 0.4 # the weight of the auxiliary loss in PSPNet
class FullModel(nn.Module):
"""The full model wrapper."""
def __init__(self, seg_model='deeplabv3',
model=None,
loss_type=None,
criterion=None):
super(FullModel, self).__init__()
assert seg_model in ['pspnet', 'deeplabv3', 'deeplabv3+']
self.seg_model = seg_model
self.model = model
self.loss_type = loss_type
self.criterion = criterion
def forward(self, inputs=None, target=None, global_step=0, mode='train'):
"""forward step"""
# output of the model
output = self.model(inputs)
# do not calclate the loss during validation or testing
if 'val' in mode or 'test' in mode:
if self.seg_model == 'pspnet':
output = output[0]
return output
# PSPNet have auxilary branch
if self.loss_type == 2:
if self.seg_model == 'pspnet':
#loss = self.criterion(output[0], target) + _PSP_AUX_WEIGHT * self.criterion(output[1], target)
#loss = loss / (1.0 + _PSP_AUX_WEIGHT)
loss = self.criterion(output[0], target) + _PSP_AUX_WEIGHT * F.cross_entropy(input=output[1],
target=target.long(),
ignore_index=255,
reduction='mean')
output = output[0]
else:
loss = self.criterion(output, target)
elif self.loss_type == 3:
if self.seg_model == 'pspnet':
loss = (self.criterion(output[0], target, global_step=global_step) +
_PSP_AUX_WEIGHT * self.criterion(output[1], target, global_step=global_step))
output = output[0]
else:
loss = self.criterion(output, target, global_step=global_step)
elif self.loss_type == 5:
if self.seg_model == 'pspnet':
loss = self.criterion(output[0], target) + _PSP_AUX_WEIGHT * self.criterion(output[1], target)
output = output[0]
else:
loss = self.criterion(output, target)
else:
if self.seg_model == 'pspnet':
loss = (self.criterion(output[0], target.long()) + _PSP_AUX_WEIGHT * self.criterion(output[1], target.long()))
output = output[0]
else:
loss = self.criterion(output, target.long())
#loss = loss.unsqueeze(dim=0)
return output, loss