Skip to content

Latest commit

 

History

History
74 lines (54 loc) · 2.49 KB

INSTALL.md

File metadata and controls

74 lines (54 loc) · 2.49 KB

Install

  1. Clone the RESA repository

    git clone https://github.com/zjulearning/resa.git
    

    We call this directory as $RESA_ROOT

  2. Create a conda virtual environment and activate it (conda is optional)

    conda create -n resa python=3.8 -y
    conda activate resa
  3. Install dependencies

    # Install pytorch firstly, the cudatoolkit version should be same in your system. (you can also use pip to install pytorch and torchvision)
    conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
    
    # Or you can install via pip
    pip install torch torchvision
    
    # Install python packages
    pip install -r requirements.txt
  4. Data preparation

    Download CULane and Tusimple. Then extract them to $CULANEROOT and $TUSIMPLEROOT. Create link to data directory.

    cd $RESA_ROOT
    ln -s $CULANEROOT data/CULane
    ln -s $TUSIMPLEROOT data/tusimple

    For Tusimple, the segmentation annotation is not provided, hence we need to generate segmentation from the json annotation.

    python scripts/convert_tusimple.py --root $TUSIMPLEROOT
    # this will generate segmentations and two list files: train_gt.txt and test.txt

    For CULane, you should have structure like this:

    $RESA_ROOT/data/CULane/driver_xx_xxframe    # data folders x6
    $RESA_ROOT/data/CULane/laneseg_label_w16    # lane segmentation labels
    $RESA_ROOT/data/CULane/list                 # data lists
    

    For Tusimple, you should have structure like this:

    $RESA_ROOT/data/tusimple/clips # data folders
    $RESA_ROOT/data/tusimple/lable_data_xxxx.json # label json file x4
    $RESA_ROOT/data/tusimple/test_tasks_0627.json # test tasks json file
    $RESA_ROOT/data/tusimple/test_label.json # test label json file
    
  5. Install CULane evaluation tools.

    This tools requires OpenCV C++. Please follow here to install OpenCV C++. Or just install opencv with command sudo apt-get install libopencv-dev

    Then compile the evaluation tool of CULane.

    cd $RESA_ROOT/runner/evaluator/culane/lane_evaluation
    make
    cd -

    Note that, the default opencv version is 3. If you use opencv2, please modify the OPENCV_VERSION := 3 to OPENCV_VERSION := 2 in the Makefile.