-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathmain.py
73 lines (61 loc) · 1.95 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
import os.path as osp
import time
import shutil
import torch
import torchvision
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import torch.optim
import cv2
import numpy as np
import models
import argparse
from utils.config import Config
from runner.runner import Runner
from datasets import build_dataloader
def main():
args = parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(str(gpu) for gpu in args.gpus)
cfg = Config.fromfile(args.config)
cfg.gpus = len(args.gpus)
cfg.load_from = args.load_from
cfg.finetune_from = args.finetune_from
cfg.view = args.view
cfg.work_dirs = args.work_dirs + '/' + cfg.dataset.train.type
cudnn.benchmark = True
cudnn.fastest = True
runner = Runner(cfg)
if args.validate:
val_loader = build_dataloader(cfg.dataset.val, cfg, is_train=False)
runner.validate(val_loader)
else:
runner.train()
def parse_args():
parser = argparse.ArgumentParser(description='Train a detector')
parser.add_argument('config', help='train config file path')
parser.add_argument(
'--work_dirs', type=str, default='work_dirs',
help='work dirs')
parser.add_argument(
'--load_from', default=None,
help='the checkpoint file to resume from')
parser.add_argument(
'--finetune_from', default=None,
help='whether to finetune from the checkpoint')
parser.add_argument(
'--validate',
action='store_true',
help='whether to evaluate the checkpoint during training')
parser.add_argument(
'--view',
action='store_true',
help='whether to show visualization result')
parser.add_argument('--gpus', nargs='+', type=int, default='0')
parser.add_argument('--seed', type=int,
default=None, help='random seed')
args = parser.parse_args()
return args
if __name__ == '__main__':
main()