-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_face_feature.py
102 lines (89 loc) · 4.15 KB
/
get_face_feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import cv2
from arcface.resnet import resnet_face18
import torch
import numpy as np
import os
import pickle
import sys
from collections import OrderedDict
def convert_onnx():
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model_path = 'arcface/resnet18_110.pth'
model = resnet_face18(use_se=False)
# model = torch.nn.DataParallel(model)
# model.load_state_dict(torch.load(model_path, map_location=device))
state_dict = torch.load(model_path, map_location=device)
new_state_dict = OrderedDict()
for k, v in state_dict.items():
new_state_dict[k.replace('module.', '')] = v ## remove 'module.'
model.load_state_dict(new_state_dict)
model.to(device)
model.eval()
dummy_input = torch.randn(1, 1, 128, 128).to(device)
onnx_path = 'arcface/resnet18_110.onnx'
torch.onnx.export(model, dummy_input, onnx_path, input_names=['input'], output_names=['output'])
class arcface():
def __init__(self, model_path='arcface/resnet18_110.pth', device = 'cuda'):
self.model = resnet_face18(use_se=False)
# self.model = torch.nn.DataParallel(self.model)
# self.model.load_state_dict(torch.load(model_path, map_location=device))
state_dict = torch.load(model_path, map_location=device)
new_state_dict = OrderedDict()
for k, v in state_dict.items():
new_state_dict[k.replace('module.', '')] = v ## remove 'module.'
self.model.load_state_dict(new_state_dict)
self.model.to(device)
self.model.eval()
self.device = device
def get_feature(self, img):
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.resize(img, (128, 128), interpolation=cv2.INTER_AREA)
img = img[np.newaxis, np.newaxis, :, :]
# img = np.transpose(img, axes=(2,0,1))
# img = img[np.newaxis, :, :, :]
img = img.astype(np.float32, copy=False)
img -= 127.5
img /= 127.5
with torch.no_grad():
data = torch.from_numpy(img).to(self.device)
output = self.model(data)
output = output.data.cpu().numpy()
return output
class arcface_dnn():
def __init__(self, model_path='arcface/resnet18_110.onnx'):
self.model = cv2.dnn.readNetFromONNX(model_path)
self.input_size = (128, 128)
def get_feature(self, img):
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.resize(img, self.input_size, interpolation=cv2.INTER_AREA)
blob = cv2.dnn.blobFromImage(img, scalefactor=1 / 127.5, mean=127.5)
self.model.setInput(blob)
output = self.model.forward(['output'])
return output
if __name__ == '__main__':
from yoloface_detect_align_module import yoloface ###你还可以选择其他的人脸检测器
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# face_embdnet = arcface(device=device)
face_embdnet = arcface_dnn() ###已调试通过,与pytorch版本的输出结果吻合
detect_face = yoloface(device=device)
out_emb_path = 'yoloface_detect_arcface_feature.pkl'
imgroot = '你的文件夹绝对路径'
dirlist = os.listdir(imgroot) ### imgroot里有多个文件夹,每个文件夹存放着一个人物的多个肖像照,文件夹名称是人名
feature_list, name_list = [], []
for i,name in enumerate(dirlist):
sys.stdout.write("\rRun person{0}, name:{1}".format(i, name))
sys.stdout.flush()
imgdir = os.path.join(imgroot, name)
imglist = os.listdir(imgdir)
for imgname in imglist:
srcimg = cv2.imread(os.path.join(imgdir, imgname))
_, face_img = detect_face.detect(srcimg) ###肖像照,图片中有且仅有有一个人脸
if len(face_img)!=1:
continue
feature_out = face_embdnet.get_feature(face_img[0])
feature_list.append(np.squeeze(feature_out))
name_list.append(name)
if len(feature_list)>0:
face_feature = (np.asarray(feature_list), name_list)
with open(out_emb_path, 'wb') as f:
pickle.dump(face_feature, f)