-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathretinaface_detect_align_module.py
107 lines (98 loc) · 4.92 KB
/
retinaface_detect_align_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import numpy as np
import torch
import cv2
from retinaface.detector import RetinafaceDetector, RetinafaceDetector_dnn
from align_faces import align_process
class retinaface():
def __init__(self, device = 'cuda', align=False):
self.retinaface = RetinafaceDetector(device=device)
self.align = align
def detect(self, srcimg):
bounding_boxes, landmarks = self.retinaface.detect_faces(srcimg)
drawimg, face_rois = srcimg.copy(), []
for i in range(bounding_boxes.shape[0]):
# score = bounding_boxes[i,4]
x1, y1, x2, y2 = (bounding_boxes[i, :4]).astype(np.int32)
cv2.rectangle(drawimg, (x1, y1), (x2, y2), (0, 0, 255), thickness=2)
face_roi = srcimg[y1:y2, x1:x2]
landmark = landmarks[i, :].reshape((2, 5)).T
if self.align:
face_roi = align_process(srcimg, bounding_boxes[i, :4], landmark, (224, 224))
landmark = landmark.astype(np.int32)
for j in range(5):
cv2.circle(drawimg, (landmark[j, 0], landmark[j, 1]), 2, (0, 255, 0), thickness=-1)
# cv2.putText(drawimg, str(j), (landmark[j, 0], landmark[j, 1] + 12), cv2.FONT_HERSHEY_DUPLEX, 1, (0, 0, 255))
face_rois.append(face_roi)
return drawimg, face_rois
def get_face(self, srcimg):
bounding_boxes, landmarks = self.retinaface.detect_faces(srcimg)
boxs, face_rois = [], []
for i in range(bounding_boxes.shape[0]):
# score = bounding_boxes[i,4]
box = (bounding_boxes[i, :4]).astype(np.int32).tolist()
face_roi = srcimg[box[1]:box[3], box[0]:box[2]]
landmark = landmarks[i, :].reshape((2, 5)).T
if self.align:
face_roi = align_process(srcimg, bounding_boxes[i, :4], landmark, (224, 224))
box.extend(landmark.astype(np.int32).ravel().tolist())
boxs.append(tuple(box))
face_rois.append(face_roi)
return boxs, face_rois
class retinaface_dnn():
def __init__(self, align=False):
self.net = RetinafaceDetector_dnn()
self.align = align
def detect(self, srcimg):
bounding_boxes, landmarks = self.net.detect_faces(srcimg)
drawimg, face_rois = srcimg.copy(), []
for i in range(bounding_boxes.shape[0]):
# score = bounding_boxes[i,4]
x1, y1, x2, y2 = (bounding_boxes[i, :4]).astype(np.int32)
cv2.rectangle(drawimg, (x1, y1), (x2, y2), (0, 0, 255), thickness=2)
face_roi = srcimg[y1:y2, x1:x2]
landmark = landmarks[i, :].reshape((2, 5)).T
if self.align:
face_roi = align_process(srcimg, bounding_boxes[i, :4], landmark, (224, 224))
landmark = landmark.astype(np.int32)
for j in range(5):
cv2.circle(drawimg, (landmark[j, 0], landmark[j, 1]), 2, (0, 255, 0), thickness=-1)
# cv2.putText(drawimg, str(j), (landmark[j, 0], landmark[j, 1] + 12), cv2.FONT_HERSHEY_DUPLEX, 1, (0, 0, 255))
face_rois.append(face_roi)
return drawimg, face_rois
def get_face(self, srcimg):
bounding_boxes, landmarks = self.net.detect_faces(srcimg)
boxs, face_rois = [], []
for i in range(bounding_boxes.shape[0]):
# score = bounding_boxes[i,4]
box = (bounding_boxes[i, :4]).astype(np.int32).tolist()
face_roi = srcimg[box[1]:box[3], box[0]:box[2]]
landmark = landmarks[i, :].reshape((2, 5)).T
if self.align:
face_roi = align_process(srcimg, bounding_boxes[i, :4], landmark, (224, 224))
box.extend(landmark.astype(np.int32).ravel().tolist())
boxs.append(tuple(box))
face_rois.append(face_roi)
return boxs, face_rois
if __name__ == "__main__":
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# retinaface_detect = retinaface(device=device, align=True)
retinaface_detect = retinaface_dnn(align=True)
###dnn版本和pytorch版本的一个区别是: pytorch版本的输入图片不做resize就进入到网络里,而dnn版本的输入图片要resize到固定尺寸的,
###输入不同,因此对这两个版本的输出不做比较
imgpath = 's_l.jpg'
srcimg = cv2.imread(imgpath)
drawimg, face_rois = retinaface_detect.detect(srcimg)
# boxs, face_rois = retinaface_detect.get_face(srcimg)
# drawimg = srcimg.copy()
# for i,box in enumerate(boxs):
# cv2.rectangle(drawimg, (box[0], box[1]), (box[2], box[3]), (0, 0, 255), thickness=2)
# for j in range(5):
# cv2.circle(drawimg, (box[4+j * 2], box[4+j * 2 + 1]), 2, (0, 255, 0), thickness=-1)
#
# for i, face in enumerate(face_rois):
# cv2.namedWindow('face' + str(i), cv2.WINDOW_NORMAL)
# cv2.imshow('face' + str(i), face)
cv2.namedWindow('detect', cv2.WINDOW_NORMAL)
cv2.imshow('detect', drawimg)
cv2.waitKey(0)
cv2.destroyAllWindows()