-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
252 lines (217 loc) · 10.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#-------------------------------------#
# 对数据集进行训练
#-------------------------------------#
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.optim as optim
from torch.utils.data import DataLoader
from tqdm import tqdm
from nets.retinanet import Retinanet
from nets.retinanet_training import FocalLoss, LossHistory, weights_init
from utils.dataloader import RetinanetDataset, retinanet_dataset_collate
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
#---------------------------------------------------#
# 获得类和先验框
#---------------------------------------------------#
def get_classes(classes_path):
'''loads the classes'''
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def fit_one_epoch(net,focal_loss,epoch,epoch_size,epoch_size_val,gen,genval,Epoch,cuda):
total_loss = 0
val_loss = 0
net.train()
print('Start Train')
with tqdm(total=epoch_size,desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar:
for iteration, batch in enumerate(gen):
if iteration >= epoch_size:
break
images, targets = batch[0], batch[1]
with torch.no_grad():
if cuda:
images = torch.from_numpy(images).type(torch.FloatTensor).cuda()
targets = [torch.from_numpy(ann).type(torch.FloatTensor).cuda() for ann in targets]
else:
images = torch.from_numpy(images).type(torch.FloatTensor)
targets = [torch.from_numpy(ann).type(torch.FloatTensor) for ann in targets]
optimizer.zero_grad()
#-------------------#
# 获得预测结果
#-------------------#
_, regression, classification, anchors = net(images)
#-------------------#
# 计算损失
#-------------------#
loss, _, _ = focal_loss(classification, regression, anchors, targets, cuda=cuda)
loss.backward()
torch.nn.utils.clip_grad_norm_(net.parameters(), 1e-2)
optimizer.step()
total_loss += loss.item()
pbar.set_postfix(**{'total_loss': total_loss / (iteration + 1),
'lr' : get_lr(optimizer)})
pbar.update(1)
net.eval()
print('Start Validation')
with tqdm(total=epoch_size_val, desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar:
for iteration, batch in enumerate(genval):
if iteration >= epoch_size_val:
break
images_val, targets_val = batch[0], batch[1]
with torch.no_grad():
if cuda:
images_val = torch.from_numpy(images_val).type(torch.FloatTensor).cuda()
targets_val = [torch.from_numpy(ann).type(torch.FloatTensor).cuda() for ann in targets_val]
else:
images_val = torch.from_numpy(images_val).type(torch.FloatTensor)
targets_val = [torch.from_numpy(ann).type(torch.FloatTensor) for ann in targets_val]
optimizer.zero_grad()
_, regression, classification, anchors = net(images_val)
loss, _, _ = focal_loss(classification, regression, anchors, targets_val, cuda=cuda)
val_loss += loss.item()
pbar.set_postfix(**{'total_loss': val_loss / (iteration + 1)})
pbar.update(1)
loss_history.append_loss(total_loss/(epoch_size+1), val_loss/(epoch_size_val+1))
print('Finish Validation')
print('Epoch:'+ str(epoch+1) + '/' + str(Epoch))
print('Total Loss: %.4f || Val Loss: %.4f ' % (total_loss/(epoch_size+1),val_loss/(epoch_size_val+1)))
print('Saving state, iter:', str(epoch+1))
torch.save(model.state_dict(), 'logs/Epoch%d-Total_Loss%.4f-Val_Loss%.4f.pth'%((epoch+1),total_loss/(epoch_size+1),val_loss/(epoch_size_val+1)))
return val_loss/(epoch_size_val+1)
if __name__ == "__main__":
#--------------------------------------------#
# 是否使用Cuda
# 没有GPU可以设置成False
#--------------------------------------------#
Cuda = True
#--------------------------------------------#
# 输入图像大小
#--------------------------------------------#
input_shape = (600, 600)
#--------------------------------------------#
# phi == 0 : resnet18
# phi == 1 : resnet34
# phi == 2 : resnet50
# phi == 3 : resnet101
# phi == 4 : resnet152
#--------------------------------------------#
phi = 2
#--------------------------------------------#
# 训练前一定要注意注意修改
# classes_path对应的txt的内容
# 修改成自己需要分的类
#--------------------------------------------#
classes_path = 'model_data/xinye_classes.txt'
#--------------------------------------------#
# 获取classes和数量
#--------------------------------------------#
class_names = get_classes(classes_path)
num_classes = len(class_names)
#----------------------------------------------------#
# 获取Retinanet模型
#----------------------------------------------------#
model = Retinanet(num_classes, phi, False)
weights_init(model)
#----------------------------------------------------#
# 权值文件请看README,百度网盘下载
#----------------------------------------------------#
model_path = "model_data/retinanet_resnet50.pth"
print('Loading weights into state dict...')
model_dict = model.state_dict()
pretrained_dict = torch.load(model_path)
pretrained_dict = {k: v for k, v in pretrained_dict.items() if np.shape(model_dict[k]) == np.shape(v)}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
print('Finished!')
net = model.train()
if Cuda:
net = torch.nn.DataParallel(model)
cudnn.benchmark = True
net = net.cuda()
focal_loss = FocalLoss()
loss_history = LossHistory("logs/")
#----------------------------------------------------#
# 获得图片路径和标签
#----------------------------------------------------#
annotation_path = 'xinye.txt'
#----------------------------------------------------------------------#
# 验证集的划分在train.py代码里面进行
# 2007_test.txt和2007_val.txt里面没有内容是正常的。训练不会使用到。
# 当前划分方式下,验证集和训练集的比例为1:9
#----------------------------------------------------------------------#
val_split = 0.1
with open(annotation_path) as f:
lines = f.readlines()
np.random.seed(10101)
np.random.shuffle(lines)
np.random.seed(None)
num_val = int(len(lines) * val_split)
num_train = len(lines) - num_val
#------------------------------------------------------#
# 主干特征提取网络特征通用,冻结训练可以加快训练速度
# 也可以在训练初期防止权值被破坏。
# Init_Epoch为起始世代
# Freeze_Epoch为冻结训练的世代
# Epoch总训练世代
# 提示OOM或者显存不足请调小Batch_size
#------------------------------------------------------#
if True:
#--------------------------------------------#
# BATCH_SIZE不要太小,不然训练效果很差
#--------------------------------------------#
lr = 1e-4
Batch_size = 4
Init_Epoch = 0
Freeze_Epoch = 25
optimizer = optim.Adam(net.parameters(),lr)
lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.5, patience=2, verbose=True)
train_dataset = RetinanetDataset(lines[:num_train], (input_shape[0], input_shape[1]), True)
val_dataset = RetinanetDataset(lines[num_train:], (input_shape[0], input_shape[1]), False)
gen = DataLoader(train_dataset, shuffle=True, batch_size=Batch_size, num_workers=4, pin_memory=True,
drop_last=True, collate_fn=retinanet_dataset_collate)
gen_val = DataLoader(val_dataset, shuffle=True, batch_size=Batch_size, num_workers=4,pin_memory=True,
drop_last=True, collate_fn=retinanet_dataset_collate)
epoch_size = num_train // Batch_size
epoch_size_val = num_val // Batch_size
if epoch_size == 0 or epoch_size_val == 0:
raise ValueError("数据集过小,无法进行训练,请扩充数据集。")
#------------------------------------#
# 冻结一定部分训练
#------------------------------------#
for param in model.backbone_net.parameters():
param.requires_grad = False
for epoch in range(Init_Epoch,Freeze_Epoch):
val_loss = fit_one_epoch(net,focal_loss,epoch,epoch_size,epoch_size_val,gen,gen_val,Freeze_Epoch,Cuda)
lr_scheduler.step(val_loss)
if True:
#--------------------------------------------#
# BATCH_SIZE不要太小,不然训练效果很差
#--------------------------------------------#
lr = 1e-5
Batch_size = 2
Freeze_Epoch = 25
Unfreeze_Epoch = 100
optimizer = optim.Adam(net.parameters(),lr)
lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.5, patience=2, verbose=True)
train_dataset = RetinanetDataset(lines[:num_train], (input_shape[0], input_shape[1]), True)
val_dataset = RetinanetDataset(lines[num_train:], (input_shape[0], input_shape[1]), False)
gen = DataLoader(train_dataset, shuffle=True, batch_size=Batch_size, num_workers=4, pin_memory=True,
drop_last=True, collate_fn=retinanet_dataset_collate)
gen_val = DataLoader(val_dataset, shuffle=True, batch_size=Batch_size, num_workers=4,pin_memory=True,
drop_last=True, collate_fn=retinanet_dataset_collate)
epoch_size = num_train // Batch_size
epoch_size_val = num_val // Batch_size
if epoch_size == 0 or epoch_size_val == 0:
raise ValueError("数据集过小,无法进行训练,请扩充数据集。")
#------------------------------------#
# 解冻后训练
#------------------------------------#
for param in model.backbone_net.parameters():
param.requires_grad = True
for epoch in range(Freeze_Epoch,Unfreeze_Epoch):
val_loss = fit_one_epoch(net,focal_loss,epoch,epoch_size,epoch_size_val,gen,gen_val,Unfreeze_Epoch,Cuda)
lr_scheduler.step(val_loss)