-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprofile.html
714 lines (674 loc) · 29.1 KB
/
profile.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
---
layout: default
title: "Tianrong Zhang | 张天容"
header-img: "img/tag-bg.jpg"
---
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1">
<!-- Page Header: Image banner and text on it-->
<header class="intro-header" style="background-image: url('{{ site.baseurl }}/{% if page.header-img %}{{ page.header-img }}{% else %}{{ site.header-img }}{% endif %}')">
<div class="container">
<div class="row">
<div class="col-lg-8 col-lg-offset-2 col-md-10 col-md-offset-1">
<div class="site-heading" id="tag-heading">
<h1 id="profile_title" style="font-size: 50px;"></h1>
<!--- Subheading unused for now
<span class="subheading">{{ page.description }}</span>
!-->
</div>
</div>
</div>
</div>
</header>
<!--- The container of content body -->
<div class="c_container">
<div class="row" id="profile_div" style="margin-left: auto; margin-right: auto;">
<!--- This is the language selection box -->
<!-- Animation handler is defined at the end of the file -->
<div class="lan-changer" style="display:none;">
Language 语言:
<select class="sel-lang" onchange= "onLanChange(this.options[this.options.selectedIndex].value)" style="box-shadow: 0 5px 25px rgba(0, 0, 0, 0.2); -webkit-appearance: button; appearance: button; outline: none;">
<option value="0"> Chinese 中文 </option>
<option value="1" selected> English 英文 </option>
</select>
</div>
<!-- Chinese Version -->
<div class="zh post-container">
<section id="about-me">
<div class="section-title" style="width: 20%;">
<img src="../img/profile-img.JPG" style="width: 90%; margin: 0em 0em 0em 0em; display: none;" id="img_zh" >
<span style="display: none;" id="img-replace">简述</span>
</div>
<div class="section-content">
<div class="block">
<div class="block-content">
<p>我是张天容,密西根大学计算机科学硕士在读,毕业于 <a href="https://cse.engin.umich.edu/">密西根大学工程学院</a> and <a href="http://umji.sjtu.edu.cn/">上海交通大学密西根学院</a>. </p>
<p>目前我主要希望研究自然语言处理相关领域,尤其是 language grounding。 该领域还包括了 situated language,探究语言的产生等方向。</p>
</div>
</div>
</div>
</section>
<!-- Section about higher education history -->
<section id="education">
<div class="section-title">
教育经历
</div>
<div class="section-content">
<div class="block">
<div class="block-title">
密西根大学 - 安娜堡分校 - 硕士
</div>
<div class="block-subtitle">
2020/09 至今 | 计算机科学
</div>
<div class="block-content">
<strong>GPA</strong>: 4.00/4.00<br>
<strong>重要课程</strong>:<br>
<ul class="course-list">
<li>信息论</li>
<li>应用GPU编程</li>
<li>近似算法</li>
<li>计算机视觉导论</li>
</ul>
</div>
</div>
<div class="block">
<div class="block-title">
密西根大学 - 安娜堡分校 - 学士
</div>
<div class="block-subtitle">
2018/09 ~ 2020/04 | 计算机科学
</div>
<div class="block-content">
<strong>GPA</strong>: 3.83/4.00<br>
<strong>重要课程</strong>:<br>
<ul class="course-list">
<li>编码与信息论</li>
<li>贝叶斯数据分析</li>
<li>数据库管理系统</li>
<li>算法导论</li>
<li>机器学习导论</li>
<li>计算机视觉中的深度学习</li>
<li>自然语言处理</li>
<li>实体人工智能中的场所相关语言学习</li>
<li>编译器原理</li>
<li>计算机架构</li>
</ul>
<strong>荣誉</strong>:
<ul>
<li>University Honors</li>
<li>Dean's List</li>
</ul>
</div>
</div>
<div class="block">
<div class="block-title">
上海交通大学 - 学士
</div>
<div class="block-subtitle">
2016/09 ~ 2020/08 | 电气与计算机工程
</div>
<div class="block-content">
<strong>GPA</strong>: 3.01/4.00<br>
<strong>重要课程</strong>:<br>
<ul class="course-list">
<li>现代物理</li>
<li>大数据处理</li>
</ul>
</div>
</div>
</div>
</section>
<section id="experience">
<div class="section-title">
研究经历
</div>
<div class="section-content">
<div class="block">
<div class="block-title">
EAGLe Lab, UMich
</div>
<div class="block-subtitle">
2019/09 至今 | 本科研究助理
</div>
<div class="block-content">
<p>Embodied Agent & Grounded LanguagE Laboratory (EAGLE) 是由 <a href="https://web.eecs.umich.edu/~chaijy/">Joyce Chai</a> 教授在密西根大学新成立的实验室。实验室主页还在建设中。实验室主要研究 language grounding 和实体 AI 相关的内容。目前正在寻找新奇尤其是与传统不同的研究课题。</p>
<div class="project-item-odd">
<p>
<p class='project-title'><strong>Evaluation and Interpretation of Fidelity in Current VLN models (Undergoing)</strong></p>
<p class='project-author'>Shane Storks, Tianrong Zhang, Qiucheng Wu, Brian Epstein</p>
Performances in Visual Language and Navigation (VLN) tasks are usually evaluated with success rate (SR) of reaching the target position. However, this measure diviates from the idea of instruction following because it lacks the supervision on the intermediate behaviours. Coverage weighted by Length Score (CLS) was introduced by Vihan Jain et. al in <a href="https://arxiv.org/pdf/1905.12255">2019</a> to account for this problem but it is a graph-based metrics that doesn't take into consideration the sementic level features of the environment. We propose a new metric that attends to both landmark and action sequencs induced by the pridicted path in hope of exposing more insightful interpretation of the current best=performing models.
</p>
</div>
<div style="height:10pt"> </div>
<div class="project-item-even">
<p>
<p class='project-title'><strong>Missing Step Inference in Procedural Text (2019)</strong></p>
<p class='project-author'>Tianrong Zhang, Tianchun Huang, Shujie Yang</p>
Procedural text roughly resembles step decomposition of the execution of a task. The ability to complete the missing part of the procedure manifests the model's ability to reason about the causality between steps. We propose utilizing BERT-GPT2 auto-encoding scheme to predicted the abridged part of the text. The model can take image/video/knowledge graph information as external source to which the lexicons in the text are grounded.
</p>
</div>
</div>
<div class="block">
<div class="block-title">
<a href="https://speechlab.sjtu.edu.cn/">Speech Lab, SJTU</a>
</div>
<div class="block-subtitle">
2019/05 - 2019/08 | 本科短期研究实习
</div>
<div class="block-content">
主要尝试将图神经网络添加进现有的 slot-tagger 中,希望得益于图中存在的统计信息,提升网络使用数据的效率,在冷启动时能够更加通过少量样本迅速地完成学习。
</div>
</div>
</div>
</section>
<section id="experience">
<div class="section-title">
教学经历
</div>
<div class="section-content">
<div class="block">
<div class="block-title">
批改作业
</div>
<div class="block-subtitle">
2020/09 ~ 2020/12 | 算法导论 | EECS 477 密西根大学
</div>
<div class="block">
<div class="block-title">
批改作业
</div>
<div class="block-subtitle">
2020/01 ~ 2020/04 | 数据库管理系统 | EECS 484 密西根大学
</div>
<div class="block-content">
<p>线上批改作业并给学生提供反馈,处理学生对阅卷的异议。</p>
</div>
</div>
</section>
<section id="contact-info">
<div class="section-title">
联系方式
</div>
<div class="section-content">
<div class="block">
<div class="block-content">
<div class="contact-item">
<i class="fa fa-phone-square aria-hidden=" true=""></i> +1 (734)-7735-275
</div>
<div class="contact-item">
<a href="mailto:[email protected]">
<i class="fa fa-envelope aria-hidden=" true=""></i> [email protected]
</a>
</div>
<div class="contact-item">
<a href="https://zhangtianrong.github.io/">
<i class="fa fa-globe aria-hidden=" true=""></i> 个人博客
</a>
</div>
<div class="contact-item">
<a href="https://github.com/zhangtianrong/">
<i class="fa fa-github aria-hidden=" true=""></i> GitHub 主页
</a>
</div>
</div>
</div>
</div>
</section>
</div>
<!-- English Version -->
<div class="en post-container">
<section id="about-me">
<div class="section-title" style="width: 20%;">
<img src="../img/profile-img.JPG" style="width: 90%; margin: 0em 0em 0em 0em; display: none;" id="img_en" >
<span style="display: none;" id="img-replace">Profile</span>
</div>
<div class="section-content">
<div class="block">
<div class="block-content">
<p>I am Tianrong Zhang, Master's student in Computer Science at University of Michigan. I received my bachelor degrees from <a href="https://cse.engin.umich.edu/">University of Michigan College of Engineering</a> and <a href="http://umji.sjtu.edu.cn/">Shanghai Jiao Tong University - University of Michigan Joint Institute</a>. </p>
<p>Currently, I am in pursuit of research career in Natural Language Processing, with a focus on language grounding. This area of research also include topics such as situated language and emergence of language.</p>
</div>
</div>
</div>
</section>
<!-- Section about higher education history -->
<section id="education">
<div class="section-title">
Education
</div>
<div class="section-content">
<div class="block">
<div class="block-title">
University of Michigan, Ann Arbor - Master
</div>
<div class="block-subtitle">
Sep 2020 ~ Now | Bachelor of Science in Engineering | Computer Science
</div>
<div class="block-content">
<strong>GPA</strong>: 4.00/4.00<br>
<strong>Major Courses</strong>:<br>
<ul class="course-list">
<li>Information Theory</li>
<li>Applied GPU Programming</li>
<li>Fundations of Computer Vision</li>
<li>Approximation Algorithms</li>
</ul>
</div>
</div>
<div class="block">
<div class="block-title">
University of Michigan, Ann Arbor - Bachelor
</div>
<div class="block-subtitle">
Sep 2018 ~ Apr 2020 | Bachelor of Science in Engineering | Computer Science
</div>
<div class="block-content">
<strong>GPA</strong>: 3.83/4.00<br>
<strong>Major Courses</strong>:<br>
<ul class="course-list">
<li>Coding Theory</li>
<li>Bayes Data Analysis</li>
<li>Database Management System</li>
<li>Introduction to Algorithms</li>
<li>Introduction to Machine Learning</li>
<li>Deep Learning for Vision</li>
<li>Natrual Language Processing</li>
<li>Situated Language for Embodied AI</li>
<li>Compiler Construction</li>
<li>Computer Architecture</li>
</ul>
<strong>Remarks</strong>:
<ul>
<li>University Honors</li>
<li>Dean's List</li>
</ul>
</div>
</div>
<div class="block">
<div class="block-title">
Shanghai Jiao Tong University - Bachelor
</div>
<div class="block-subtitle">
Sep 2016 ~ Aug 2020 | Bachelor of Engineering | Electrical and Computer Engineering
</div>
<div class="block-content">
<strong>GPA</strong>: 3.01/4.00<br>
<strong>Major Courses</strong>:<br>
<ul class="course-list">
<li>Modern Physics</li>
<li>Big Data Analysis</li>
</ul>
</div>
</div>
</div>
</section>
<section id="experience">
<div class="section-title">
Research Experience
</div>
<div class="section-content">
<div class="block">
<div class="block-title">
EAGLe Lab, UMich
</div>
<div class="block-subtitle">
Sep 2019 - Now | Undergraduate Research Assistant
</div>
<div class="block-content">
<p>Embodied Agent & Grounded LanguagE Laboratory (EAGLE) is a new founded laboratory led by <a href="https://web.eecs.umich.edu/~chaijy/">Prof. Joyce Chai</a> at University of Michigan. The lab webpage is still under construction. The lab focuses on language grounding as well as the embodiment of AIs and is now actively seeking for extraordinary and most importantly pattern-changing topics. As a founding member, I am engaged in forming research ideas and reviewing related works.</p>
<div class="project-item-odd">
<p>
<p class='project-title'><strong>Evaluation and Interpretation of Fidelity in Current VLN models (Undergoing)</strong></p>
<p class='project-author'>Shane Storks, Tianrong Zhang, Qiucheng Wu, Brian Epstein</p>
Performances in Visual Language and Navigation (VLN) tasks are usually evaluated with success rate (SR) of reaching the target position. However, this measure diviates from the idea of instruction following because it lacks the supervision on the intermediate behaviours. Coverage weighted by Length Score (CLS) was introduced by Vihan Jain et. al in <a href="https://arxiv.org/pdf/1905.12255">2019</a> to account for this problem but it is a graph-based metrics that doesn't take into consideration the sementic level features of the environment. We propose a new metric that attends to both landmark and action sequencs induced by the pridicted path in hope of exposing more insightful interpretation of the current best=performing models.
</p>
</div>
<div style="height:10pt"> </div>
<div class="project-item-even">
<p>
<p class='project-title'><strong>Missing Step Inference in Procedural Text (2019)</strong></p>
<p class='project-author'>Tianrong Zhang, Tianchun Huang, Shujie Yang</p>
Procedural text roughly resembles step decomposition of the execution of a task. The ability to complete the missing part of the procedure manifests the model's ability to reason about the causality between steps. We propose utilizing BERT-GPT2 auto-encoding scheme to predicted the abridged part of the text. The model can take image/video/knowledge graph information as external source to which the lexicons in the text are grounded.
</p>
</div>
</div>
</div>
<div class="block">
<div class="block-title">
<a href="https://speechlab.sjtu.edu.cn/">Speech Lab, SJTU</a>
</div>
<div class="block-subtitle">
May 2019 - August 2019 | Undergraduate Research Intern
</div>
<div class="block-content">
I worked on incorporating graph neural network into a slot tagger to make use of the statistical relation between slots and tags. This is supposed to improve data efficiency and cold-start performances. The project has been passed on succeeding membernces.
</div>
</div>
</div>
</section>
<section id="experience">
<div class="section-title">
Teaching Working
</div>
<div class="section-content">
<div class="block">
<div class="block-title">
Grader
</div>
<div class="block-subtitle">
Seq 2020 ~ Dec 2020 | Introduction to Algorithms | EECS 477 UMich
</div>
<div class="block-title">
Grader
</div>
<div class="block-subtitle">
Jan 2020 ~ Apr 2020 | Database Management System | EECS 484 UMich
</div>
<div class="block-content">
<p>Grade weekly assignments online, provide feedbacks and response to regrade requests.</p>
</div>
</div>
</section>
<section id="contact-info">
<div class="section-title">
Contact
</div>
<div class="section-content">
<div class="block">
<div class="block-content">
<div class="contact-item">
<i class="fa fa-phone-square aria-hidden=" true=""></i> +1 (734)-7735-275
</div>
<div class="contact-item">
<a href="mailto:[email protected]">
<i class="fa fa-envelope aria-hidden=" true=""></i> [email protected]
</a>
</div>
<div class="contact-item">
<a href="https://zhangtianrong.github.io/">
<i class="fa fa-globe aria-hidden=" true=""></i> Personal Blog
</a>
</div>
<div class="contact-item">
<a href="https://github.com/zhangtianrong/">
<i class="fa fa-github aria-hidden=" true=""></i> GitHub Profile
</a>
</div>
</div>
</div>
</div>
</section>
</div>
</div>
</div>
<!-- Handle Language Change -->
<script type="text/javascript">
// get nodes
var $zh = document.querySelector(".zh");
var $en = document.querySelector(".en");
var $select = document.querySelector("select");
// bind hashchange event
window.addEventListener('hashchange', _render);
// handle render
function _render(){
var _hash = window.location.hash;
// en
if(_hash == "#en"){
$select.selectedIndex = 1;
var $img_display = document.getElementById("img_zh").style.display;
$en.style.display = "block";
$zh.style.display = "none";
document.getElementById("img_en").style.display = $img_display;
// zh by default
}else{
// not trigger onChange, otherwise cause a loop call.
var $img_display = document.getElementById("img_en").style.display;
$select.selectedIndex = 0;
$zh.style.display = "block";
$en.style.display = "none";
document.getElementById("img_zh").style.display = $img_display;
}
}
// handle select change
function onLanChange(index){
if(index == 0){
window.location.hash = "#zh"
}else{
window.location.hash = "#en"
}
}
// init
_render();
</script>
<!-- Language Select Box animation for both desktop and mobile browsers -->
<script type="text/javascript">
var isMobile = false;
window.onload = function() {
if( navigator.userAgent.match(/Android/i)
|| navigator.userAgent.match(/webOS/i)
|| navigator.userAgent.match(/iPhone/i)
|| navigator.userAgent.match(/iPad/i)
|| navigator.userAgent.match(/iPod/i)
|| navigator.userAgent.match(/BlackBerry/i)
|| navigator.userAgent.match(/Windows Phone/i)
){ // In mobile mode, the language select box appears only when the page is scrolled to top
document.getElementById('profile_title').innerHTML = "Tianrong Zhang";
document.getElementById("img-replace").style.display = "inline";
document.getElementsByClassName("lan-changer")[0].style.display = "block";
document.getElementsByClassName("lan-changer")[0].style.height="30px";
document.addEventListener("scroll",function () {
var scrolllenth=document.getElementById("profile_title").getBoundingClientRect().top;
if (scrolllenth >= 70)
document.getElementsByClassName("lan-changer")[0].style.opacity=1;
else if (scrolllenth < 70 && scrolllenth > -100)
{
document.getElementsByClassName("lan-changer")[0].style.opacity=1+(scrolllenth-70)/170;
document.getElementsByClassName("lan-changer")[0].style.height="" + (30*(0.5-Math.cos(Math.PI*(1+(scrolllenth-70)/170))/2)) +"px";
}
else
document.getElementsByClassName("lan-changer")[0].style.opacity=0;})
}else{
// In desktop mode, the language select box appears only when hovered over
document.getElementById('profile_title').innerHTML = "Tianrong Zhang | 张天容";
document.getElementById("img_zh").style.display = "inline";
document.getElementById("img_en").style.display = "inline";
css = ".lan-changer { height:0px; opacity: 0; transition: height .45s ease-in-out, opacity 1s ease-in-out; -moz-transition: height .45s ease-in-out, opacity 1s ease-in-out; -webkit-transition: height .45s ease-in-out, opacity 1s ease-in-out;} .lan-changer:hover {opacity: 1; height: 30px}";
var style = document.createElement('style');
if (style.styleSheet) {
style.styleSheet.cssText = css;
} else {
style.appendChild(document.createTextNode(css));
}
document.getElementsByTagName('head')[0].appendChild(style);
document.getElementsByClassName("lan-changer")[0].style.display = "block";
}
};
</script>
<style>
html{
width:100%;
font-size:16px
}
body{
text-align:center;
width:100%;
-webkit-font-smoothing:antialiased;
font-size:1rem;
margin:0;
color:#495057;
background-color:#fff
}
p{
margin: 0em 0em 0.45em;
}
ul {
margin-bottom: 0em !important;
}
ul.course-list {
columns: 2;
-webkit-columns: 2;
-moz-columns: 2;
}
.project-item-odd {
background-color: #F3F3F3;
font-family: Consolas;
padding-left: 1em;
padding-right: 1em;
padding-top: 0.1em;
padding-bottom: 0.2em;
}
.project-item-even {
background-color: #F3F3F3;
font-family: Consolas;
padding-left: 1em;
padding-right: 1em;
padding-top: 0.1em;
padding-bottom: 0.2em;
}
.project-title {
margin: 0em 0em 0em;
}
.project-author {
margin-bottom: 0.5rem;
font-style: italic;
}
a{
text-decoration:none;
color:inherit
}
.block-title > a {
color: black !important;
}
a:hover{
text-decoration:underline
}
.c_container{
margin-left:auto;
margin-right:auto;
margin-bottom:1rem;
max-width:48rem;
text-align:left}
@media screen and (max-width: 48rem){
html{
font-size:12px
}
.c_container{
padding-left:.4rem;
padding-right:.4rem
}
}
header{
display:flex;
justify-content:space-between;
border-bottom:0.1rem solid #adb5bd;
padding-top:2.2rem;
padding-bottom:2.2rem
}
.title{
font-size:2.2rem
}
.sub-title{
font-size:1.2rem;
margin-top:.8rem
}
.contact{
font-size:1rem;
padding-top:1rem
}
.contact-item{
margin-top:.4rem
}
.contact-item:nth-child(1){
margin-top:0
}
.contact-item:a{
color:inherit;
text-decoration:none}
@media screen and (max-width: 48rem){
header{
display:block;
padding-bottom:1rem
}
.contact{
padding-top:1rem;
border-top:0.1rem solid #adb5bd
}
.contact-item{
padding-top:.2rem;
padding-left:.4rem
}
}
section{
display:flex;
padding-top:2.4rem;
padding-bottom:2.4rem;
padding-left:.2rem;
border-bottom:0.1rem solid #adb5bd;
hyphens:auto
}
.section-title{
font-size:1.75rem;
text-align:left;
min-width:10rem;
font-family: DFPRareBook, 'Times New Roman', Times, serif;
width: 20%;
}
.section-flex{
display:flex;
flex-wrap:wrap
}
.block{
margin-bottom:2rem
}
.block:last-child{
margin-bottom:0
}
.block-square{
width:18rem
}
.block-square:nth-last-child(2){
margin-bottom:0
}
.block-title{
font-size:1.2rem;
margin-bottom:0rem;
margin-top: 0.5rem;
font-weight:bold
}
.block-subtitle{
font-size:1rem;
margin-bottom:0.25rem;
color:#adb5bd;
font-family: 'Times New Roman', Times, serif;
font-style: italic;
}
.block-content{
font-size:0.9rem;
list-style: height 1.7em;
}
@media screen and (max-width: 48rem){
section{
display:block;
padding-top:2rem;
padding-bottom:2rem
}
.section-title{
margin-bottom:0rem;
width:100% !important;
text-align: center;
}
.section-flex{
display:block
}
.block-square:nth-last-child(2){margin-bottom:2rem}
#img_en {
display:none !important;
}
#img_zh {
display:none !important;
}
#img-replace {
display:inline !important;
}
}
</style>