-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcnn_sample.py
315 lines (251 loc) · 12 KB
/
cnn_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# date: 2022/06
# author:Yushan Zheng
# emai:[email protected]
import numpy as np
import pickle
import os
import cv2
import argparse
from multiprocessing import Pool
from yacs.config import CfgNode
from loader import get_tissue_mask, extract_tile
from utils import *
parser = argparse.ArgumentParser('Sampling patches for CNN trianing')
parser.add_argument('--cfg', type=str, default='',
help='The path of yaml config file')
parser.add_argument('--num-workers', type=int, default=8,
help='The processors used for parallel sampling.')
parser.add_argument('--ignore-annotation', action='store_true', default=False,
help='Ignore annotations when sampling.')
parser.add_argument('--invert-rgb', action='store_true', default=False,
help='Adjust the format between RGB and BGR.\
The default color format of the patch is BGR')
def main(args):
np.random.seed(1)
if args.cfg:
cfg = CfgNode(new_allowed=True)
cfg.merge_from_file(args.cfg)
merge_config_to_args(args, cfg)
with open(args.slide_list, 'rb') as f:
slide_data = pickle.load(f)
slide_list = slide_data['train'] + slide_data['test']
args.dataset_path = get_sampling_path(args)
print('slide num', len(slide_list))
sampling_list = [(i, args) for i in slide_list]
if args.num_workers < 2:
# sampling the data using single thread
for s in slide_list:
sampling_slide((s, args))
else:
# sampling the data in parallel
with Pool(args.num_workers) as p:
p.map(sampling_slide, sampling_list)
list_path = get_data_list_path(args)
dataset_split_path = os.path.join(list_path, 'split.pkl')
if not os.path.exists(dataset_split_path):
train_list = slide_data['train']
np.random.shuffle(train_list)
folds = [train_list[f_id::args.fold_num] for f_id in range(args.fold_num)]
folds.append(slide_data['test'] )
if not os.path.exists(list_path):
os.makedirs(list_path)
with open(dataset_split_path, 'wb') as f:
pickle.dump(folds, f)
make_list(args)
return 0
def sampling_slide(slide_info):
slide_guid, slide_rpath, slide_label = slide_info[0]
args = slide_info[1]
time_file_path = os.path.join(args.dataset_path, slide_guid, 'info.txt')
if os.path.exists(time_file_path):
print(slide_guid, 'is already sampled. skip.')
return 0
slide_path = os.path.join(args.slide_dir, slide_rpath)
image_dir = os.path.join(slide_path, scales[args.level])
tissue_mask = get_tissue_mask(cv2.imread(
os.path.join(slide_path, 'Overview.jpg')))
content_mat = cv2.blur(tissue_mask, ksize=args.filter_size, anchor=(0, 0))
content_mat = content_mat[::args.srstep, ::args.srstep]
mask_path = os.path.join(slide_path, 'AnnotationMask.png')
# Use the annotation to decide the label of the patch if annotation is available.
# Otherwise, assign a psudo-label to the patch based on the WSI label it belongs to.
if not args.ignore_annotation and os.path.exists(mask_path):
mask = cv2.imread(os.path.join(slide_path, 'AnnotationMask.png'), 0)
positive_mat = cv2.blur(
(mask > 0)*255, ksize=args.filter_size, anchor=(0, 0))
positive_mat = positive_mat[::args.srstep, ::args.srstep]
# the left-top position of benign patches
bn_lt = np.transpose(
np.asarray(
np.where((positive_mat < args.negative_ratio * 255)
& (content_mat > args.intensity_thred)), np.int32))
if bn_lt.shape[0] > args.max_per_class:
bn_lt = bn_lt[np.random.choice(
bn_lt.shape[0], args.max_per_class, replace=False)]
if bn_lt.shape[0] > 0:
slide_save_dir = os.path.join(args.dataset_path, slide_guid, '0')
if not os.path.exists(slide_save_dir):
os.makedirs(slide_save_dir)
extract_and_save_tiles(image_dir, slide_save_dir, bn_lt,
args.tile_size, args.imsize, args.sample_step, args.invert_rgb)
class_list = np.unique(mask[mask > 0])
for c in class_list:
class_index_mat = cv2.blur(
(mask == c)*255, ksize=args.filter_size, anchor=(0, 0))
class_index_mat = class_index_mat[::args.srstep, ::args.srstep]
# the left-top position of tumor patches
tm_lt = np.transpose(
np.asarray(
np.where((class_index_mat > args.positive_ratio * 255)
& (content_mat > args.intensity_thred)), np.int32))
if tm_lt.shape[0] > args.max_per_class:
tm_lt = tm_lt[np.random.choice(
tm_lt.shape[0], args.max_per_class, replace=False)]
slide_save_dir = os.path.join(args.dataset_path, slide_guid, str(c))
if not os.path.exists(slide_save_dir):
os.makedirs(slide_save_dir)
extract_and_save_tiles(image_dir, slide_save_dir, tm_lt,
args.tile_size, args.imsize, args.sample_step, args.invert_rgb)
if args.save_mask:
extract_and_save_masks(mask, slide_save_dir, tm_lt, args)
else:
content_lt = np.transpose(
np.asarray(
np.where(content_mat > args.intensity_thred), np.int32))
if content_lt.shape[0] > args.max_per_class:
content_lt = content_lt[np.random.choice(
content_lt.shape[0], args.max_per_class, replace=False)]
if content_lt.shape[0] > 0:
slide_save_dir = os.path.join(args.dataset_path, slide_guid, str(slide_label))
if not os.path.exists(slide_save_dir):
os.makedirs(slide_save_dir)
extract_and_save_tiles(image_dir, slide_save_dir, content_lt,
args.tile_size, args.imsize, args.sample_step, args.invert_rgb)
print(slide_guid, 'Patch num: ', content_lt.shape[0])
if os.path.exists(os.path.join(args.dataset_path, slide_guid)):
with open(time_file_path, 'w') as f:
f.write('Sampling finished')
def make_list(args, min_file_size=5 * 1024):
"""
Attributes:
min_file_size : The minimum size of the jpeg considered in the training.
5*1024=5Kb: The histopathology image with no substantial content generally
in size of under 5Kb when compressed in jpeg format.
"""
dataset_path = get_sampling_path(args)
list_path = get_data_list_path(args)
dataset_split_path = os.path.join(list_path, 'split.pkl')
if not os.path.exists(dataset_split_path):
raise AssertionError('Run sampling function first.')
with open(dataset_split_path, 'rb') as f:
folds = pickle.load(f)
config_path = os.path.join(list_path, 'list_config.csv')
if os.path.exists(config_path):
print('The list exists. Delete <list_config.csv> to remake the list.')
return 0
sample_list = []
slide_count = 0
for f_id, fold_list in enumerate(folds):
sub_set_name = 'test' if f_id == args.fold_num else 'fold_{}'.format(f_id)
sample_list_fold = []
class_slide_counter = np.zeros(len(args.lesions))
class_image_counter = np.zeros(len(args.lesions))
for s_id, s_info in enumerate(fold_list):
s_guid, s_rpath, s_label = s_info
slide_dir = os.path.join(dataset_path, s_guid)
if not os.path.exists(slide_dir):
continue
class_list = os.listdir(slide_dir)
for c in class_list:
c_dir = os.path.join(slide_dir, c)
if os.path.isfile(c_dir):
continue
class_slide_counter[int(c)] += 1
image_list = os.listdir(c_dir)
image_list_tmp = []
if len(image_list) > args.max_per_class:
for use_img in np.random.choice(len(image_list), args.max_per_class, replace=False):
image_list_tmp.append(image_list[use_img])
image_list = image_list_tmp
for img in image_list:
if img[-3:] == 'jpg':
img_path = os.path.join(c_dir, img)
# The file size of jpeg image
if os.path.getsize(img_path) < min_file_size:
continue
sample_str = [os.path.join(s_guid, c, img),]
for task_id in args.task_list.keys():
sample_str.append(args.task_list[task_id]['map'][int(c)])
if args.save_mask:
sample_str.append(os.path.join(
s_guid, c, img[:-4] + '_mask.png'))
sample_str.append(slide_count + s_id)
sample_list_fold.append(sample_str)
class_image_counter[int(c)] += 1
slide_count += len(fold_list)
with open(config_path, 'a') as f:
print_str = '{}, slide number: '.format(sub_set_name)
for num in class_slide_counter:
print_str += '{},'.format(num)
print_str += ' image number: '
for num in class_image_counter:
print_str += '{},'.format(num)
print_str += '\n'
f.write(print_str)
print(print_str)
sample_list.append(sample_list_fold)
for f_id in range(args.fold_num+1):
f_name = 'list_fold_all' if f_id == args.fold_num else 'list_fold_{}'.format(
f_id)
val_set = sample_list[f_id]
train_set = []
if f_id == args.fold_num:
for train_f_id in range(args.fold_num+1):
train_set += sample_list[train_f_id]
else:
train_index = np.hstack(
(np.arange(0, f_id), np.arange(f_id+1, args.fold_num)))
for train_f_id in train_index:
train_set += sample_list[train_f_id]
train_set_shuffle = []
for tss in np.random.permutation(len(train_set)):
train_set_shuffle.append(train_set[tss])
test_set = sample_list[-1]
sub_list_path = os.path.join(list_path, f_name)
if not os.path.exists(sub_list_path):
os.makedirs(sub_list_path)
with open(os.path.join(sub_list_path, 'train'), 'wb') as f:
pickle.dump({'base_dir': dataset_path,
'list': train_set_shuffle}, f)
if len(val_set):
with open(os.path.join(sub_list_path, 'val'), 'wb') as f:
pickle.dump({'base_dir': dataset_path, 'list': val_set}, f)
if len(test_set):
with open(os.path.join(sub_list_path, 'test'), 'wb') as f:
pickle.dump({'base_dir': dataset_path, 'list': test_set}, f)
return 0
def extract_and_save_tiles(image_dir, slide_save_dir, position_list, tile_size,
imsize, step, invert_rgb=False):
for pos in position_list:
img = extract_tile(image_dir, tile_size, pos[1] * step, pos[0] * step,
imsize, imsize)
if len(img) > 0:
if invert_rgb:
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
cv2.imwrite(
os.path.join(slide_save_dir, '{:04d}_{:04d}.jpg'.format(pos[1], pos[0])), img)
def extract_and_save_masks(slide_mask, slide_save_dir, position_list, args):
for pos in position_list:
y = pos[0] * args.rstep
x = pos[1] * args.rstep
img = slide_mask[y:(y + args.msize), x:(x + args.msize)]
if len(img) > 0:
img = cv2.resize(img, (args.imsize, args.imsize),
interpolation=cv2.INTER_NEAREST)
cv2.imwrite(
os.path.join(slide_save_dir, '{:04d}_{:04d}_mask.png'.format(pos[1], pos[0])), img*50)
if __name__ == "__main__":
args = parser.parse_args()
main(args)