-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathkat_train.py
461 lines (390 loc) · 18.9 KB
/
kat_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# date: 2020/12
# author:yushan zheng
# emai:[email protected]
import argparse
import os
import pickle
import time
import numpy as np
from yacs.config import CfgNode
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data.distributed
import torch.backends.cudnn as cudnn
import torch.multiprocessing as mp
import torch.distributed as dist
from model import KAT, kat_inference
from loader import KernelWSILoader
from loader import DistributedWeightedSampler
from utils import *
import random
import builtins
import warnings
def arg_parse():
parser = argparse.ArgumentParser(description='KAT arguments.')
parser.add_argument('--cfg', type=str,
default='',
help='The path of yaml config file')
parser.add_argument('--fold', type=int, default=-1, help='use all data for training if it is set -1')
parser.add_argument('--batch-size', type=int, default=64,
help='Batch size.')
parser.add_argument('--num-epochs', type=int, default=300,
help='Number of epochs to train.')
parser.add_argument('--num-workers', type=int, default=8,
help='Number of workers to load data.')
parser.add_argument('--lr', type=float, default=1e-4,
help='Learning rate.')
parser.add_argument('--shuffle-train', default=False, action='store_true',
help='Shuffle the train list')
parser.add_argument('--weighted-sample', action='store_true',
help='Balance the sample number from different types\
in each mini-batch for training.')
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--dist-url', default='', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true', default=False,
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--redo', default=False, action='store_true',
help='Ingore all the cache files and re-train the model.')
parser.add_argument('--eval-model', type=str, default='',
help='provide a path of a trained model to evaluate the performance')
parser.add_argument('--eval-freq', type=int, default=30,
help='The epoch frequency to evaluate on vlidation and test sets.')
parser.add_argument('--print-freq', type=int, default=10,
help='The mini-batch frequency to print results.')
parser.add_argument('--prefix-name', type=str, default='',
help='A prefix for the model name.')
parser.add_argument('--node-aug', default=False, action='store_true',
help='Randomly reduce the nodes for data augmentation》')
return parser.parse_args()
def main(args):
if args.cfg:
cfg = CfgNode(new_allowed=True)
cfg.merge_from_file(args.cfg)
merge_config_to_args(args, cfg)
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node,
args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
args.num_classes = args.task_list[args.label_id]['num_classes']
graph_model_path = get_kat_path(args, args.prefix_name)
checkpoint = []
if not args.redo:
checkpoint_path = os.path.join(
graph_model_path, 'checkpoint.pth.tar')
if os.path.exists(checkpoint_path):
checkpoint = torch.load(
checkpoint_path, map_location=torch.device('cpu'))
print("=> loading checkpoint")
if checkpoint:
args.start_epoch = checkpoint['epoch']
if args.start_epoch >= args.num_epochs:
print('model training is finished')
return 0
else:
print('model train from epoch {}/{}'.format(args.start_epoch, args.num_epochs))
else:
args.start_epoch = 0
args.gpu = gpu
# suppress printing if not master
if args.multiprocessing_distributed and args.gpu != 0:
def print_pass(*args):
pass
builtins.print = print_pass
if args.gpu is not None and not args.distributed:
print("Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.rank == -1:
if args.dist_url == "env://":
args.rank = int(os.environ["RANK"])
elif 'SLURM_PROCID' in os.environ:
args.rank = int(os.environ['SLURM_PROCID'])
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
graph_list_dir = os.path.join(get_graph_list_path(args), args.fold_name)
# train graph data
train_set = KernelWSILoader(
os.path.join(graph_list_dir, 'train'),
max_node_number=args.max_nodes,
patch_per_kernel=args.npk,
task_id=args.label_id,
max_kernel_num=args.kn,
node_aug=args.node_aug,
two_augments=False
)
args.input_dim = train_set.get_feat_dim()
# create model
model = KAT(
num_pk=args.npk,
patch_dim=args.input_dim,
num_classes=args.num_classes,
dim=args.trfm_dim,
depth=args.trfm_depth,
heads=args.trfm_heads,
mlp_dim=args.trfm_mlp_dim,
dim_head=args.trfm_dim_head,
num_kernal=args.kn,
pool = args.trfm_pool,
)
if args.gpu is not None:
model = model.cuda(args.gpu)
if os.path.isfile(args.resume):
print("=> resume checkpoint '{}'".format(args.resume))
resume_model_params = torch.load(
args.resume, map_location=torch.device('cpu'))
model.load_state_dict(resume_model_params['state_dict'])
else:
if checkpoint:
model.load_state_dict(checkpoint['state_dict'])
if args.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
args.batch_size = int(args.batch_size / ngpus_per_node)
args.num_workers = int(args.num_workers / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.gpu])
else:
model.cuda()
# DistributedDataParallel will divide and allocate batch_size to all
# available GPUs if device_ids are not set
model = torch.nn.parallel.DistributedDataParallel(model)
elif args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
else:
model = torch.nn.DataParallel(model).cuda()
if args.weighted_sample:
print('activate weighted sampling')
if args.distributed:
train_sampler = DistributedWeightedSampler(
train_set, train_set.get_weights(), args.world_size, args.rank)
else:
train_sampler = torch.utils.data.sampler.WeightedRandomSampler(
train_set.get_weights(), len(train_set), replacement=True
)
else:
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_set)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=args.batch_size, shuffle=args.shuffle_train,
num_workers=args.num_workers, sampler=train_sampler)
# validation graph data
val_path = os.path.join(graph_list_dir, 'val')
if not os.path.exists(val_path):
valid_loader = None
else:
valid_set = KernelWSILoader(val_path,
max_node_number=args.max_nodes,
patch_per_kernel=args.npk,
task_id=args.label_id,
max_kernel_num=args.kn,
node_aug=False,
two_augments=False
)
valid_loader = torch.utils.data.DataLoader(
valid_set, batch_size=args.batch_size, shuffle=False,
num_workers=args.num_workers, drop_last=False, sampler=None
)
# test graph data
test_path = os.path.join(graph_list_dir, 'test')
if not os.path.exists(test_path):
test_loader = None
else:
test_set = KernelWSILoader(test_path,
max_node_number=args.max_nodes,
patch_per_kernel=args.npk,
task_id=args.label_id,
max_kernel_num=args.kn,
node_aug=False,
two_augments=False
)
test_loader = torch.utils.data.DataLoader(
test_set, batch_size=args.batch_size, shuffle=False,
num_workers=args.num_workers, drop_last=False, sampler=None
)
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=500, gamma=0.7)
if checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
if args.eval_model and test_loader is not None:
model_params = torch.load(args.eval_model, map_location='cpu')
model.load_state_dict(model_params['state_dict'])
test_acc, test_cm, test_auc, test_data = evaluate(test_loader, model, criterion, args, 'Valid')
with open(os.path.join(graph_model_path, 'eval.pkl'), 'wb') as f:
pickle.dump({'acc':test_acc, 'cm':test_cm, 'auc':test_auc,'data':test_data}, f)
return 0
if not args.multiprocessing_distributed or (args.multiprocessing_distributed
and args.rank == 0):
if not os.path.exists(graph_model_path):
os.makedirs(graph_model_path)
with open(graph_model_path + '.csv', 'a') as f:
f.write('epoch, train acc, V, val acc, val w-auc, val m-auc, val w-f1, val m-f1 ,\
T, tet acc, test w-auc, test m-auc, test w-f1, test m-f1, \n')
for epoch in range(args.start_epoch, args.num_epochs):
begin_time = time.time()
train_acc = train(train_loader, model, criterion, optimizer, epoch, args)
print('epoch time: ', time.time()-begin_time)
scheduler.step()
if not args.multiprocessing_distributed or (args.multiprocessing_distributed
and args.rank == 0):
if epoch % args.eval_freq == 0:
if valid_loader is not None:
val_acc, val_cm, val_auc, val_data = evaluate(valid_loader, model, criterion, args, 'Valid')
if test_loader is not None:
test_acc, test_cm, test_auc, test_data = evaluate(test_loader, model, criterion, args, 'Test')
if valid_loader is not None:
with open(graph_model_path + '.csv', 'a') as f:
f.write('{},{:.3f},V,{:.3f},{:.3f},{:.3f},{:.3f},{:.3f},T,{:.3f},{:.3f},{:.3f},{:.3f},{:.3f}, SUB,'.format(
epoch, train_acc/100.0,
val_acc/100.0, val_auc['micro'], val_auc['macro'], val_auc['w_f1'], val_auc['m_f1'],
test_acc/100.0, test_auc['micro'], test_auc['macro'], test_auc['w_f1'], test_auc['m_f1'],)
)
for cn in range(test_cm.shape[0]):
f.write(',{:.2f}'.format(test_cm[cn, cn]))
f.write('\n')
result_data_path = os.path.join(graph_model_path, 'result{}.pkl'.format(epoch + 1))
with open(result_data_path, 'wb') as f:
pickle.dump({'val':val_data, 'test':test_data}, f)
torch.save({
'epoch': epoch + 1,
'state_dict': model.module.state_dict() if args.distributed else model.state_dict(),
'optimizer' : optimizer.state_dict(),
}, os.path.join(graph_model_path, 'checkpoint.pth.tar'))
torch.save({
'epoch': epoch + 1,
'state_dict': model.module.state_dict() if args.distributed else model.state_dict(),
'optimizer' : optimizer.state_dict(),
'args': args
}, os.path.join(graph_model_path, 'model_{}.pth.tar'.format(epoch + 1)))
def train(train_loader, model, criterion, optimizer, epoch, args):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top2 = AverageMeter('Acc@2', ':6.2f')
progress = ProgressMeter(len(train_loader), batch_time, data_time, losses, top1,
top2, prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
end = time.time()
for i, (data, label) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
target = label.cuda(non_blocking=True)
# compute output
_, output = kat_inference(model, data)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc2 = accuracy(F.softmax(output, dim=1), target, topk=(1, 2))
losses.update(loss.item(), target.size(0))
top1.update(acc1[0], target.size(0))
top2.update(acc2[0], target.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.print(i)
return top1.avg
def evaluate(val_loader, model, criterion, args, prefix='Test'):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top2 = AverageMeter('Acc@2', ':6.2f')
progress = ProgressMeter(len(val_loader), batch_time, losses, top1, top2,
prefix=prefix)
# switch to evaluate mode
model.eval()
y_preds = []
y_labels = []
end = time.time()
processing_time = 0
with torch.no_grad():
for i, (data, label) in enumerate(val_loader):
target = label.cuda(non_blocking=True)
# compute output
pro_start = time.time()
_, output = kat_inference(model, data)
processing_time += (time.time() - pro_start)
loss = criterion(output, target)
y_preds.append(F.softmax(output, dim=1).cpu().data)
y_labels.append(label)
# measure accuracy and record loss
acc1, acc2 = accuracy(output, target, topk=(1, 2))
losses.update(loss.item(), target.size(0))
top1.update(acc1[0], target.size(0))
top2.update(acc2[0], target.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.print(i)
# TODO: this should also be done with the ProgressMeter
print(' * Acc@1 {top1.avg:.3f} Acc@2 {top2.avg:.3f} Sample per Second {time:.3f}'
.format(top1=top1, top2=top2, time=len(val_loader)*args.batch_size/processing_time))
y_preds = torch.cat(y_preds)
y_labels = torch.cat(y_labels)
confuse_mat, auc = calc_classification_metrics(y_preds, y_labels, args.num_classes, prefix=prefix)
return top1.avg, confuse_mat, auc, {'pred':y_preds, 'label':y_labels}
if __name__ == "__main__":
args = arg_parse()
main(args)