-
Notifications
You must be signed in to change notification settings - Fork 104
/
Copy patheval_video.py
66 lines (58 loc) · 3.36 KB
/
eval_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#!/usr/bin/env python
def eval_davis_result(results_path, davis_path):
import os
import sys
from time import time
import argparse
import numpy as np
import pandas as pd
from davis2017.evaluation import DAVISEvaluation
time_start = time()
parser = argparse.ArgumentParser()
parser.add_argument('--davis_path', type=str, help='Path to the DAVIS folder containing the JPEGImages, Annotations, '
'ImageSets, Annotations_unsupervised folders')
parser.add_argument('--set', type=str, help='Subset to evaluate the results', default='val')
parser.add_argument('--task', type=str, help='Task to evaluate the results', default='semi-supervised',
choices=['semi-supervised', 'unsupervised'])
parser.add_argument('--results_path', type=str, help='Path to the folder containing the sequences folders', default='')
args, _ = parser.parse_known_args()
csv_name_global = f'global_results-{args.set}.csv'
csv_name_per_sequence = f'per-sequence_results-{args.set}.csv'
# Check if the method has been evaluated before, if so read the results, otherwise compute the results
args.results_path = results_path
args.davis_path = davis_path
csv_path = args.results_path.replace("result", "result_csv")
os.makedirs(csv_path, exist_ok=True)
csv_name_global_path = os.path.join(csv_path, csv_name_global)
csv_name_per_sequence_path = os.path.join(csv_path, csv_name_per_sequence)
print(f'Evaluating sequences for the {args.task} task...')
# Create dataset and evaluate
dataset_eval = DAVISEvaluation(davis_root=args.davis_path, task=args.task, gt_set=args.set)
metrics_res = dataset_eval.evaluate(args.results_path)
J, F = metrics_res['J'], metrics_res['F']
# Generate dataframe for the general results
g_measures = ['J&F-Mean', 'J-Mean', 'J-Recall', 'J-Decay', 'F-Mean', 'F-Recall', 'F-Decay']
final_mean = (np.mean(J["M"]) + np.mean(F["M"])) / 2.
g_res = np.array([final_mean, np.mean(J["M"]), np.mean(J["R"]), np.mean(J["D"]), np.mean(F["M"]), np.mean(F["R"]),
np.mean(F["D"])])
g_res = np.reshape(g_res, [1, len(g_res)])
table_g = pd.DataFrame(data=g_res, columns=g_measures)
with open(csv_name_global_path, 'w') as f:
table_g.to_csv(f, index=False, float_format="%.3f")
print(f'Global results saved in {csv_name_global_path}')
# Generate a dataframe for the per sequence results
seq_names = list(J['M_per_object'].keys())
seq_measures = ['Sequence', 'J-Mean', 'F-Mean']
J_per_object = [J['M_per_object'][x] for x in seq_names]
F_per_object = [F['M_per_object'][x] for x in seq_names]
table_seq = pd.DataFrame(data=list(zip(seq_names, J_per_object, F_per_object)), columns=seq_measures)
with open(csv_name_per_sequence_path, 'w') as f:
table_seq.to_csv(f, index=False, float_format="%.3f")
print(f'Per-sequence results saved in {csv_name_per_sequence_path}')
# Print the results
sys.stdout.write(f"--------------------------- Global results for {args.set} ---------------------------\n")
print(table_g.to_string(index=False))
sys.stdout.write(f"\n---------- Per sequence results for {args.set} ----------\n")
print(table_seq.to_string(index=False))
total_time = time() - time_start
sys.stdout.write('\nTotal time:' + str(total_time))