-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDynaDiffusion.py
123 lines (96 loc) · 4.34 KB
/
DynaDiffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import math
import future.utils
import networkx as nx
import numpy as np
from ndlib.models.DiffusionModel import DiffusionModel
#Here The Only difference from Continuous Time Diffusion Model is the node can itself deactivate as denoted by status 2
class DynaDiffusion(DiffusionModel):
def __init__(self, graph):
# Call the super class constructor
super(self.__class__, self).__init__(graph)
# Method name
self.name = "DynaDiffusion"
# Available node statuses
self.available_statuses = {
"Susceptible": 0,
"Infected": 1,
"removed": 2
}
# Exposed Parameters
self.parameters = {
"model": {
"last":{
"descr" : "Last Time Allowed",
"optional" : True,
"default" : 1000
}
},
"nodes":{
"time": {
"descr": "Node time",
"optional": True,
"default": 10
}, "deacaying":{
"descr": "Node Decay",
"optional":True
}
},
"edges":{
"alpha":{
"descr" : "alpha strength",
"optional":True,
"range":[0,1],
"default": 0.4
}
}
}
def iteration(self, node_status=True):
self.clean_initial_status(self.available_statuses.values())
actual_status = {node: nstatus for node, nstatus in future.utils.iteritems(self.status)}
# if first iteration return the initial node status
if self.actual_iteration == 0:
self.actual_iteration += 1
delta, node_count, status_delta = self.status_delta(actual_status)
if node_status:
return {"iteration": 0, "status": actual_status.copy(),
"node_count": node_count.copy(), "status_delta": status_delta.copy()}
else:
return {"iteration": 0, "status": {},
"node_count": node_count.copy(), "status_delta": status_delta.copy()}
for u in self.graph.nodes():
self.actual_iteration+=1
if self.status[u] != 1:
continue
if self.params['model']['last'] > self.actual_iteration:
break
neighbors = list(self.graph.neighbors(u))
Time1=self.actual_iteration
self.params['nodes']['decaying'][u] = Time1
for v in neighbors:
self.actual_iteration+= 1
Value=self.params['nodes']['decaying'][u]
self.params['nodes']['decaying'][u]= Value*(1+math.e**(self.actual_iteration-Time1))
if self.params['nodes']['decaying'][u] < 0.05:
self.status['u']=2
if actual_status[v] == 0:
key = (u, v)
if 'alpha' in self.params['edges']:
if key in self.params['edges']['alpha']:
alpha = self.params['edges']['threshold'][key]
elif (v, u) in self.params['edges']['alpha'] and not nx.is_directed(self.graph):
alpha = self.params['edges']['threshold'][(v, u)]
Time2=self.actual_iteration
equation1=math.e**(alpha)*(Time2-Time1)
equation2=1-equation1
flip = np.random.random_sample()
if equation2 >= flip:
actual_status[v]=1
delta, node_count, status_delta = self.status_delta(actual_status)
self.status = actual_status
self.actual_iteration += 1
if node_status:
return {"iteration": self.actual_iteration - 1, "status": delta.copy(),
"node_count": node_count.copy(), "status_delta": status_delta.copy()}
else:
return {"iteration": self.actual_iteration - 1, "status": {},
"node_count": node_count.copy(), "status_delta": status_delta.copy()}