forked from facebookresearch/xformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnystrom.py
295 lines (249 loc) · 11.1 KB
/
nystrom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
import logging
from dataclasses import dataclass
from typing import Optional
import torch
import torch.nn as nn
from xformers.components.attention import Attention, AttentionConfig, register_attention
from xformers.components.attention.core import (
scaled_dot_product_attention,
scaled_query_key_softmax,
)
from xformers.components.attention.utils import (
bool_mask_to_additive,
iterative_pinv,
reshape_key_padding_mask,
)
logger = logging.getLogger("xformers")
@dataclass
class NystromSelfAttentionConfig(AttentionConfig):
"""
num_heads Number of heads.
num_landmarks Number of landmarks to use for softmax approximation. 64 often sufficient for a good
approximation according to https://arxiv.org/pdf/2102.03902.pdf.
causal Apply a causal mask, in that the attention cannot be applied to the future.
use_razavi_pinverse If true, use iterative method from (Razavi et al. 2014) to approximate the Moore-Penrose
inverse, otherwise use standard torch inverse.
pinverse_original_init True if using original initialization when calculating Moore-Penrose pseudo inverse using
method from (Razavi et al. 2014).
False if using exact coefficient computation (leads to faster convergence).
inv_iterations Number of iterations for calculating the Moore-Penrose pseudo inverse.
v_skip_connection A module that will take V as input and will be added as a skip connection to the
softmax approximation. A skip connection is added in the paper to help with training.
conv_kernel_size Kernel size for convolution optionally added to help in training.
If v_skip_connection is not specified, this will be used to define the default
depth wise convolution used as a skip connection.
If both conv_kernel_size and v_skip_connection are None, no skip connection will
be added.
landmark_pooling Which module to use when computing landmarks. Default is AdaptiveAvgPool2d.
"""
num_heads: int
num_landmarks: Optional[int]
landmark_pooling: Optional[nn.Module]
causal: Optional[bool]
pinverse_original_init: Optional[bool]
inv_iterations: Optional[int]
v_skip_connection: Optional[nn.Module]
conv_kernel_size: Optional[int]
use_razavi_pinverse: Optional[bool]
class AvgPool(nn.Module):
def __init__(self, n: int):
super().__init__()
self.n = n
def forward(self, x: torch.Tensor):
# Average independently for every segment in the sequence dimension
seq_len = x.shape[1]
head_dim = x.shape[2]
segments = seq_len // self.n
assert segments > 0, "num_landmarks should be smaller than the sequence length"
# Dimensions are a match
if seq_len % self.n == 0:
return x.reshape(
-1,
self.n,
segments,
head_dim,
).mean(dim=-2)
# Handle the last segment boundary being off
n_round = self.n - seq_len % self.n
x_avg_round = (
x[:, : n_round * segments, :]
.reshape(-1, n_round, segments, head_dim)
.mean(dim=-2)
)
x_avg_off = (
x[:, n_round * segments :, :]
.reshape(-1, self.n - n_round, segments + 1, head_dim)
.mean(dim=-2)
)
return torch.cat((x_avg_round, x_avg_off), dim=-2)
@register_attention("nystrom", NystromSelfAttentionConfig)
class NystromAttention(Attention):
# TODO: update defaults for use_razavi_pinverse and inv_iterations
def __init__(
self,
dropout: float,
num_heads: int,
num_landmarks: int = 64,
landmark_pooling: Optional[nn.Module] = None,
causal: bool = False,
use_razavi_pinverse: bool = True,
pinverse_original_init: bool = False,
inv_iterations: int = 6, # recommended default in paper was 6.
v_skip_connection: Optional[nn.Module] = None,
conv_kernel_size: Optional[int] = None,
*args,
**kwargs,
):
"""
Nystrom attention mechanism, from Nystromformer_.
::
"A Nystrom-based Algorithm for Approximating Self-Attention."
Xiong, Y., Zeng, Z., Chakraborty, R., Tan, M., Fung, G., Li, Y., Singh, V. (2021)
Reference codebase: https://github.com/mlpen/Nystromformer
.. _Nystromformer: https://arxiv.org/pdf/2102.03902.pdf
"""
super().__init__()
# merged key padding mask and attention mask is not accepted
self.requires_separate_masks = True
self.num_landmarks = num_landmarks
# TODO: should be able to not have to pass in num_heads
self.num_heads = num_heads
self.use_razavi_pinverse = use_razavi_pinverse
self.pinverse_original_init = pinverse_original_init
self.inv_iterations = inv_iterations
self.attn_drop = nn.Dropout(dropout)
self.skip_connection = v_skip_connection
self.causal = causal
if self.skip_connection is None and conv_kernel_size is not None:
self.skip_connection = nn.Conv2d(
in_channels=self.num_heads,
out_channels=self.num_heads,
kernel_size=(conv_kernel_size, 1),
padding=(conv_kernel_size // 2, 0),
bias=False,
groups=self.num_heads,
)
if landmark_pooling is not None:
self.landmark_pooling = landmark_pooling
else:
self.landmark_pooling = AvgPool(n=self.num_landmarks)
# Optional lower triangular masks for causal attention
self.causal_mask_1: Optional[torch.Tensor] = None
self.causal_mask_2: Optional[torch.Tensor] = None
self.causal_mask_3: Optional[torch.Tensor] = None
# This attention does not support attention masks
self.supports_attention_mask = False
self.supports_key_padding_mask = True
def forward(
self,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
key_padding_mask: Optional[torch.Tensor] = None,
*args,
**kwargs,
):
r"""
key_padding_mask Only a key padding mask is accepted here. The size must be (batch size, sequence length) or
(batch size * num_heads, 1, sequence length). If dimensions are not correct, the mask will
be ignored. An additive mask is expected, meaning float values using "-inf" to mask values
"""
batched_dim = k.size(0)
seq_len = k.size(-2)
tt = {"dtype": q.dtype, "device": q.device}
if key_padding_mask is not None:
if key_padding_mask.dtype == torch.bool:
logger.warning(
"Bool mask found, but an additive mask is expected. Converting but this is slow"
)
key_padding_mask = bool_mask_to_additive(key_padding_mask)
if key_padding_mask.ndim == 2:
key_padding_mask = reshape_key_padding_mask(
key_padding_mask, batched_dim
)
zeros = torch.zeros_like(key_padding_mask)
ones = torch.ones_like(key_padding_mask)
is_masked = torch.isinf(-key_padding_mask)
# _mask takes 1 if the token is not padded, otherwise 0.
_mask = torch.where(is_masked, zeros, ones)
_mask = _mask.transpose(2, 1)
assert _mask.shape == (batched_dim, q.shape[1], 1)
# Mask q and k before pooling
# https://github.com/mlpen/Nystromformer/blob/main/code/attention_nystrom.py#L31
q = q * _mask
k = k * _mask
assert key_padding_mask.size() == (batched_dim, 1, seq_len), (
f"key_padding_mask has invalid dimensions {key_padding_mask.size()}."
f" Must have dimensions {batched_dim, 1, seq_len} or (batch_size, {seq_len})."
)
if self.num_landmarks >= seq_len:
mask: Optional[torch.Tensor] = None
if self.causal:
mask = self._triu_mask(batched_dim, seq_len, seq_len, **tt)
if key_padding_mask is not None:
mask = key_padding_mask if mask is None else mask + key_padding_mask
x = scaled_dot_product_attention(q=q, k=k, v=v, att_mask=mask)
else:
q_landmarks = self.landmark_pooling(q)
k_landmarks = self.landmark_pooling(k)
if self.causal and (
self.causal_mask_1 is None
or (batched_dim, seq_len, self.num_landmarks)
!= self.causal_mask_1.size()
):
self.causal_mask_1 = self._triu_mask(
batched_dim, seq_len, self.num_landmarks, **tt
)
self.causal_mask_2 = self._triu_mask(
batched_dim, self.num_landmarks, self.num_landmarks, **tt
)
self.causal_mask_3 = self._triu_mask(
batched_dim, self.num_landmarks, seq_len, **tt
)
mask_3: Optional[torch.Tensor] = self.causal_mask_3
if key_padding_mask is not None:
mask_3 = (
key_padding_mask if mask_3 is None else mask_3 + key_padding_mask
)
kernel_1 = scaled_query_key_softmax(q=q, k=k_landmarks, att_mask=None)
kernel_2 = scaled_query_key_softmax(
q=q_landmarks, k=k_landmarks, att_mask=None
)
kernel_3 = scaled_dot_product_attention(
q=q_landmarks, k=k, v=v, att_mask=mask_3
)
kernel_2_inv = (
iterative_pinv(
kernel_2, self.inv_iterations, self.pinverse_original_init
)
if self.use_razavi_pinverse
else torch.linalg.pinv(kernel_2)
)
x = torch.matmul(
torch.matmul(
kernel_1,
kernel_2_inv,
),
kernel_3,
)
if self.skip_connection:
# Assumption here is that v is 3D.
v_conv = self.skip_connection(
v.reshape(-1, self.num_heads, v.size(-2), v.size(-1))
)
x += v_conv.reshape(-1, v_conv.size(-2), v_conv.size(-1))
x = self.attn_drop(x)
return x
def _triu_mask(self, dim_1: int, dim_2: int, dim_3: int, **kwargs) -> torch.Tensor:
device = kwargs["device"]
dtype = kwargs["dtype"]
return torch.triu(
torch.ones(dim_2, dim_3, dtype=dtype, device=device) * float("-inf"),
diagonal=1,
).expand(
dim_1, -1, -1
) # micro optim, save memory on the batch dimension