-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpytorch_rnnbkt.py
134 lines (116 loc) · 5.53 KB
/
pytorch_rnnbkt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import sys
import numpy as np
import itertools
import pandas as pd
import torch
from sklearn.metrics import *
from pyBKT.models import Model
from torch import nn
import torch.optim as optim
import argparse
class BKT_RNN(nn.Module):
def __init__(self, x_size = 1, hidden_size = 4):
super(BKT_RNN, self).__init__()
self.prior = nn.Parameter(torch.Tensor([0.1]).cuda())
self.rnn = nn.RNN(input_size = x_size, hidden_size = hidden_size).cuda()
self.params = self.rnn.parameters()
self.optimizer = optim.Adam(itertools.chain([self.prior], self.rnn.parameters()), lr = 2e-2)
self.loss = nn.BCELoss()
self.sigmoid = nn.Sigmoid()
def forward(self, x, y):
corrects = torch.zeros_like(y, dtype=torch.float32, requires_grad = False).to(x.device)
latents = torch.zeros_like(y, dtype=torch.float32, requires_grad = False).to(x.device)
output, hidden = self.rnn(x)
params = (output + 1) / 2
loss = 0
for i in range(len(x)):
correctsi, latentsi = self.extract_latent_correct(params[i], latentsi if i > 0 else self.sigmoid(self.prior))
loss = loss + self.loss(correctsi, y[i])
latents[i], corrects[i] = latentsi, correctsi
loss = loss / len(x)
return corrects, latents, loss
def extract_latent_correct(self, params, latent):
l, f, g, s = params[..., 0, None], params[..., 1, None], params[..., 2, None], params[..., 3, None]
correct = latent * (1 - s) + (1 - latent) * g
k_t1 = (latent * (1 - s)) / (latent * (1 - s) + (1 - latent) * g)
k_t0 = (latent * s) / (latent * s + (1 - latent) * (1 - g))
m_t = k_t1 * correct + k_t0 * (1 - correct)
next_latent = m_t * (1 - f) + (1 - m_t) * l
return correct, next_latent
def update(self, x, y):
corrects, latents, loss = self(x, y)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
return loss
def score_acc(self, batches):
num_correct, num_total = 0, 0
for X, y in batches_val:
corrects, _, _ = model.forward(X, y)
k, n = (corrects.round() == y).float().sum(), torch.numel(corrects)
num_correct, num_total = num_correct + k, num_total + n
return num_correct, num_total
def score_auc(self, batches):
ypred, ytrue = [], []
for X, y in batches:
corrects, _, _ = model.forward(X, y)
ypred.append(corrects.ravel().detach().cpu().numpy())
ytrue.append(y.ravel().detach().cpu().numpy())
ypred = np.concatenate(ypred)
ytrue = np.concatenate(ytrue)
return roc_auc_score(ytrue, ypred)
def score_rmse(self, batches):
ypred, ytrue = [], []
for X, y in batches:
corrects, _, _ = model.forward(X, y)
ypred.append(corrects.ravel().detach().cpu().numpy())
ytrue.append(y.ravel().detach().cpu().numpy())
ypred = np.concatenate(ypred)
ytrue = np.concatenate(ytrue)
return np.sqrt(((ytrue - ypred) ** 2).mean())
def construct_batches(seqs):
batches = []
for lens in seqs.str.len().unique():
if lens > 1:
batch = pd.DataFrame(seqs[seqs.str.len() == lens].to_list()).to_numpy()
batch = batch.T[..., None]
X, y = torch.tensor(batch[:-1], requires_grad=True, dtype=torch.float32).cuda(), torch.tensor(batch[1:], requires_grad=True, dtype=torch.float32).cuda()
batches.append([X, y])
return batches
def train(model, batches_train, batches_val, num_epochs):
for epoch in range(num_epochs):
model.train()
for X, y in batches_train:
model.update(X, y)
if epoch % 10 == 0:
print(f"Epoch {epoch}/{num_epochs} - [VALIDATION ACCURACY: {model.score_acc(batches_val)}, VALIDATION AUC: {model.score_auc(batches_val)}, VALIDATION RMSE: {model.score_rmse(batches_val)}]")
torch.save(model.state_dict(), f"ckpts/model-{tag}-{epoch}.pth")
def bkt_benchmark(train_data, test_data, **model_type):
model = Model()
try:
model.fit(data = train_data.apply(pd.Series.explode).reset_index(), **model_type)
return model.evaluate(data = test_data.apply(pd.Series.explode).reset_index(), metric = ['auc', 'accuracy', 'rmse'])
except:
model.fit(data = train_data.apply(pd.Series.explode).reset_index())
return model.evaluate(data = test_data.apply(pd.Series.explode).reset_index(), metric = ['auc', 'accuracy', 'rmse'])
parser = argparse.ArgumentParser(description = 'Parse input data files into grader format.')
parser.add_argument('--skill', required = True)
args = parser.parse_args()
original_data = pd.read_csv('as.csv', encoding = 'latin')
# skills = original_data['skill_name'].value_counts()[original_data['skill_name'].value_counts() > 2000].index
# for skill in skills:
skill = args.skill
data = original_data[original_data['skill_name'] == skill]
tag = skill.replace(' ', '').replace('/', '_')
seqs = data.groupby('user_id').agg(list)
seqs = seqs.sample(frac = 1, random_state = 42)
seqs_train = seqs.iloc[int(len(seqs) * 0.1):]
seqs_val = seqs.iloc[:int(len(seqs) * 0.1)]
#benchmark = bkt_benchmark(seqs_train, seqs_val, multigs = 'opportunity', multilearn = 'opportunity', forgets = True)
#print('BKT', skill, benchmark)
print(seqs_train.shape, seqs_val.shape)
batches_train = construct_batches(seqs_train['correct'])
batches_val = construct_batches(seqs_val['correct'])
model = BKT_RNN().cuda()
num_epochs = 500
train(model, batches_train, batches_val, num_epochs)